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A B S T R A C T   

The interactions between miRNAs and long non-coding RNAs (lncRNAs) are subject to intensive recent studies 
due to its critical role in gene regulations. Computational prediction of lncRNA-miRNA interactions has become a 
popular alternative strategy to the experimental methods for identification of underlying interactions. It is 
desirable to develop the machine learning-based models for prediction of lncRNA-miRNA based on the experi
mentally validated interactions between lncRNAs and miRNAs. The accuracy and robustness of existing models 
based on machine learning techniques are subject to further improvement. 

Considering that the attributes of lncRNA and miRNA contribute key importance in the interaction between 
these two RNAs, a deep learning model, named LMI-DForest, is proposed here by combining the deep forest and 
autoencoder strategies. Systematic comparison on the experiment validated datasets for lncRNA-miRNA inter
action datasets demonstrates that the proposed method consistently shows superior performance over the other 
machine learning models in the lncRNA-miRNA interaction prediction.   

1. Introduction 

Long non-coding RNAs (lncRNAs) is one kind of non-coding RNAs 
(ncRNAs), whose lengths are more than 200 nucleotides (Hung and 
Chang, 2010; Zhao et al., 2018; Ji et al., 2019). Previous studies (Fatica 
and Bozzoni, 2014; Turner et al., 2014) have shown that lncRNAs are 
involved in the regulation of gene expression in different levels, such as 
transcriptional, posttranscriptional, and epigenetic regulation, and 
many biological processes, such as chromatin remodeling, gene 
imprinting, immune response, etc. On the other side, as the endogenous 
small and non-coding RNA molecules, microRNAs (miRNAs) 
post-transcriptionally can regulate gene expression (Berezikov et al., 
2006; Xie et al., 2019; Zhang et al., 2019a; Huang et al., 2020; Yang 
et al., 2020a). With accumulated wet experiments, it has been widely 
approved that lncRNAs and miRNAs play key roles in cell proliferation 
and cell differentiation, and the interactions between lncRNA and 
miRNA can lead to some diseases (Kallen et al., 2013; Zhang et al., 2014; 

Tang et al., 2018; Kuang et al., 2019; Wang et al., 2019a). In some cases, 
lncRNAs can act as decoys or sponges to regulate the behavior of miR
NAs, and miRNAs can trigger lncRNAs decay. Therefore, identification 
of the interactions between lncRNAs and miRNAs is essential to under
stand their functions in diseases (Jalali et al., 2013; Veneziano et al., 
2019). 

LncRNA-miRNA interactions between these two RNAs form a com
plex regulation network for controlling gene expression on transcrip
tional, post-transcriptional, and post-translational levels. There are a 
few methods in the prediction of lncRNA-miRNA interactions. With data 
collected from some biological experiments, most of these proposed 
methods are based on the network statistical. Such as the key dysregu
lation of ncRNA expression in pathogenesis is inferred with the con
structed miRNA-mediated network of coding and non-coding RNA 
interactions. LncRNA-miRNA-RNA interaction network with sensitivity 
correlation for each triplet is obtained from the breast cancer data 
(Conte et al., 2017). Based on the knonwn miRNA-lncRNA interaction 
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network, group preference Bayesian collaborative filtering model 
(Huang et al., 2018b) is applied with picked top ranking list for an in
dividual miRNA or lncRNA. INLMI (Hu et al., 2018) is proposed to 
predict the lncRNA-miRNA interactions according to the integrating the 
expression similarity network and the sequence similarity network. The 
prediction of interactions between lncRNA and miRNA is based on lo
gistic matrix factorization (Liu et al., 2020) with neighborhood regu
larized, and the prediction of lncRNA-miRNA with the expression profile 
(Huang et al., 2018a). Moreover, there are other available prediction 
methods (Huang et al., 2019; Ismalia et al., 2019; Zhang et al., 2019b; 
Zhou et al., 2019; Fan et al., 2020; Hu et al., 2020; Kang et al., 2020; 
Wang et al., 2020a; Wong et al., 2020; Yang et al., 2020b; Zhang et al., 
2020b). However, most of the interactions between lncRNAs and miR
NAs are not known until now, a desirable model should be capable of 
predicting their interactions. 

Recently, deep neural networks (DNN) is a hot topic that has ach
ieved great success in various application areas, such as natural lan
guage processing, visual recognition, and bioinformatics (Deng et al., 
2020; Li et al., 2020a, d; Zhang et al., 2020a). With the high re
quirements of the amount of training data and hyper-parameter tuning 
skills, the application of DNN in the task of classification will be limited. 
As an alternative approach to DNN, deep forest (DeepForest) (Zhou and 
Feng, 2017) is proposed with two ensemble components: multi-gained 
scanning, which scan local context from high dimensionality to learn 
representations of input data according to different random forests, and 
cascade forest, in which neurons of deep neural networks have been 
replaced with many different random forests. In DeepForest, compared 
to DNN, fewer hyper-parameters and less parameter tuning skills in are 
required the training process. 

In this work, a new model called LMI-DForest is proposed for infer
ring new lncRNA-miRNA interactions on a large scale by combining 
DeepForest with the autoencoder model. LMI-DForest is based on the 
known lncRNA-miRNA interactions along with the expression levels of 
lncRNA and miRNA. With the experimental dataset of lncRNA and 
miRNA interactions, the model is valiadated by the 2-fold, 5-fold, and 
10-fold cross-validation, and the corresponding average AUCs are 
0.9933, 0.9940, and 0.9940. Compared to other state-of-the-art 
methods, LMI-DForest has reached higher prediction performance. In 
the case study based on lncRNAs or miRNAs, which do not have any 
known interactions, LMI-DForest helps to predict some novel in
teractions which do not exist in the dataset. 

The rest of this paper is organized as follows. In the section 2, we 
describe matrial and methods, LMI-DForest, and how the DeepForest is 
considered in the autoencoder. In section 3 experimental process and 
results have been given. Finally, In the summaries and discussion of the 
end, performance of LMI-DForest is summarized and some further ap
plications are also proposed here. 

2. Materials and methods 

2.1. Datasets 

Data containing experimentally confirmed lncRNA-miRNA in
teractions is very limited, and most of these interactions are inferred 
from the expression profiles to lncRNA or miRNA. To guranteed true 
data for our prediction, experimentally confirmed lncRNA-miRNA in
teractions are from the lncRNASNP2 database (version v2.0) (Miao 
et al., 2018), which is an updated version to lncRNASNP, and provides 
comprehensive information to lncRNAs, including lncRNA expression 
profiling, expanded lncRNA-associated diseases, and noncoding variants 
in lncRNAs (available at http://bioinfo.life.hust.edu.cn/lncRNASNP). In 
lncRNASNP2, the database is linked via the IDs of lncRNAs and inte
grated from a different source of the public database. A total of 18 595 
lncRNA-miRNA interactions (Li et al., 2014) between 3521 lncRNAs and 
276 miRNAs are verified with high reliance. Considering the superiority 
of expression file (Huang et al., 2018b), features to lnRNAs and miRNAs 
are based on the expression file. 

In the lncRNAs database, NONCODE (Fang et al., 2018) is an inte
grated knowledge database of non-coding RNAs (ncRNAs), including the 
ncRNA sequences and related information (e.g. function, cellular role, 
cellular location, chromosomal information, etc.). Features of expres
sion file to lncRNAs are present with expression levels to 22 different 
tissues/cell lines. Features to miRNA are from microrna.org 
(http://www.microrna.org/microrna/home.do) (Betel et al., 2008), 
which is a comprehensive database of microRNA expression profiles and 
target prediction. Expression files to each miRNA are for 172 various 
tissues and cell lines in the human body, which are derived from a 
comprehensive sequencing project of a large set of human tissues and 
cell lines of normal and disease origins. 

The dataset is constructed with entire lncRNA and miRNA in
teractions. In the constructed dataset, positive data is based on the 
known interactions between lncRNAs and miRNAs, and the negative 
samples contain all unknown lncRNA and miRNA interactions. 

2.2. DeepForest 

There are two components in the DeepForest (Zhou and Feng, 2017): 
multi-gained scanning and cascade forest. In the multi-gained scanning, 
which tries to extract local features by scanning raw features to generate 
a series of local low-dimensional feature vectors. With such 
low-dimensional vectors, the class distribution of the input features will 
be learned with a series of forests. Suppose there are 200 features, with 
the sliding window of 50, 151 feature vectors will be generated when 
sliding the feature by the window for one feature. With features from 
these positive/negative instances, the random forest will be trained for 
each 100-dimensional vector and generate two-dimensional class 

Fig. 1. The whole process of DeepForest. Suppose the sliding windows are 50-dim and 100-dim. In each level of the cascade consists, there are two random forests 
(RF). In the output of each forest, a two-dimensional class vector, which is then concatenated for re-representation of the original input. 
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vectors for each forest/classifier. 
As an alternative to deep neural networks, DeepForest is very 

powerful in hyper-level representations at low expense, which has 
various applications in bioinformatics field recently (Chu et al., 2019; Su 
et al., 2019; Wang et al., 2020b; Yu et al., 2020; Zeng et al., 2020; Zhu 
et al., 2020). Considering the powerful classification probability in most 
of the application, cascade forest comes true by assembling amount of 
decision-tree based random forest. With the importance of diversity in 
ensemble learning (Zhou, 2012), two random forests are employed here 
as the basis classifier. In each layer, estimated classifier distribution will 
be concatenated to the input feature, and worked as the inputs for the 
next layer. 

The framework of DeepForest is illustrated in Fig. 1. With two 
different sliding windows, 50 and 100, two generated feature vectors 
will be concatenated into one and as the input for cascade forest. In these 
two generated feature vectors, one is 604 (151× 2× 2), the other is 
404 (101 × 2 × 2). In the test instances, with the transformed feature 
representation from a multi-grained scanning procedure, and the 
cascade will be performed till the last level. The maximum aggregated 
value of these 4 generated 2-dimensional class vectors will be assumed 
as the final prediction. 

2.3. LMI-DForest: an autoencoder prediction model for lncRNA-miRNA 
interactions 

In the prediction of lncRNA-miRNA interactions, the association 
between lncRNA and miRNA can be assumed as a heterogeneous 
bipartite network. Assuming there are Nm miRNAs nodes and Nl 
lncRNAs nodes, an adjacent matrix INm×Nl will be built to represent the 
interaction between these miRNAs and lncRNAs. Each element of the 
matrix IntNm×Nl =

(
intij

)

Nm×Nl 
will represent if there is any interaction 

between these miRNAs and lncRNAs, in which 

intij = f (x)

=

{
1, if there is an interaction between ith miRNA and jth lncRNA

0, Otherwise
(1) 

The prediction of lncRNA and miRNA interaction can be assumed as 
referring to the value of unobserved entries in INm×Nl using supervised 
learning on the observed ones. Feature matrix with expression profiles to 
miRNAs are EmiRNA =

(
emij

)

Nm×Em
, and feature matrix to lnRNA are 

ElncRNA =
(
elij

)

Nl×El
, in which Em are the feature number to miRNA 

expression profiles, El are the feature number to lncRNA expression 
profiles. 

There are two components in the proposed model LMI-DForest here: 
1) the AutoEncoder layer to handle the high-dimension features of 
lncRNAs and miRNAs on their interaction network; 2) interactions be
tween lncRNA and miRNA will be predicted based on the handled 
feature in the first component. The whole flow of LMI-DForest is 
described as below (Fig. 2). 

In the AutoEncoder, features to miRNA and lncRNA can be inte
grated into the matrix 

Feature =

[
ElncRNA 0

0 ElncRNA

]

(2) 

And experimentally verified interaction between lncRNA and miRNA 
is 

INTMAT =

[
0 IntNm×Nl

IntT
Nm×Nl

0

]

(3)  

3. Experiments and results 

3.1. Evaluation of LMI-DForest 

With DeepForest in the experiments, we evaluate the effectiveness of 
LMI-DForest regarding its ability to integrate the raw data of the input 
feature. With the raw feature, the LMI-DForest is compared on 2-fold, 5- 
fold, and 10-fold cross-validation (2-CV, 5-CV and 10-CV). 

With 5-CV to evaluate prediction models. The lncRNA-miRNA in
teractions will be randomly split into 5 subsets. One subset is used as the 
testing data, and the others are used as training data in each fold. In each 
fold of each prediction model, the following evaluation metrics are 
calculated, which are widely used by the machine learning-based studies 

Fig. 2. Flow chart of LMI-DForest.  
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in the bioinformatics field (He et al., 2018; Xiong et al., 2018; Lian et al., 
2019; Yang et al., 2019; Zhu et al., 2019; Cheng et al., 2020; Jia et al., 
2020; Li et al., 2020b, c; Lissabet et al., 2020; Mu et al., 2020; Yang et al., 
2020c; Zhang et al., 2020c). 

Accuracy =
TP + TN

TP + FP + TN + FN
(4)  

Precision =
TP

TP + FP
(5)  

Recall =
TP

TP + FN
(6)  

F1 − measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)  

where TP is true positive, FP is false positive, FN is false negative, and 
TN is true negative. 

4. Results 

As a result, LMI-DForest can achieve the best prediction performance 
with average area under curves (AUCs) of 0.9933, 0.9940, and 0.9940 in 
the 2-CV, 5-CV, and 10-CV, respectively. receiver operating character
istic curve (ROC) curves on 2-CV, 5-CV, and 10-CV are shown in Fig. 3 as 
below. 

4.1. Performance comparison with other methods 

To validate the effectiveness of LMI-DForest, the proposed method 
was compared with other machine learning models: Random Forest (Tin 
Kam, 2020), XGBoost (Chen and Guestrin, 2016), support vector ma
chines (SVMs) with rbf kernel (Chang and Lin, 2011), and DeepForest 
(Zhou and Feng, 2017) on this lncRNA-miRNA interaction data set In the 
experiments, the data in training and test set are split in the ratio of 80 % 
vs 20 %, which follows a stratified approach (Hastie et al., 2009). In 
multi-gained scanning part, there are 500 trees in each forest, and 
cascade forest are based on 500 trees as the default. In the training and 
prediction, two completely random forests and two partial random 
forests were used in both multi-gained scanning and cascade forest. In 
the two partial random forests, 

̅̅̅
d

√
(d: number of input features) of 

features were selected as the candidates and separated with gini values. 
To overcome of over-fitting, 5-CV is used to evaluate the overall 

accuracy. 
In comparison to LMI-DForest with Random Forest, there are 500 

trees used here for each random forest, and 
̅̅̅
d

√
of features were selected 

as candidate features and separated with gini values. And in DeepForest, 
similar to the part of DeepForest in LMI-Dforest, both multi-gained- 
scanning andcascade forest were based on 500 trees in each forest as 
the default. In the training and prediction period, two completely 
random forests and two partial random forests were used for both both 
multi-gained scanning and cascade forest. With Table 1 as below, we can 
get comparable results when compared to DeepForest from Accuracy, 
recall, and precision, but reached some better performance than 
Random Forest, XGBoost and SVM. All these experiments were per
formed in the operating system of 64-bit Ubuntu 16.04.6 LTS (GNU/ 
Linux 4.15.0− 112-generic x86_64) in a machine with Intel(R) Xeon(R) 
CPU E5− 2640 v3 @ 2.60 GHz. 

5. Discussion 

As an alternative to deep learning, DeepForest has been proved to be 
very powerful in the classification in practice (Zhou and Feng, 2017). As 
a further implementations and applications of the standard deep forest 
model (DeepForest), AutoEncoder is employed here to handle 
high-dimension before the classification with DeepForest. It is shown to 
be an effective method in the label prediction of lncRNA-miRNA in
teractions. Our LMI-DForest method is an effective option to investigate 
label classification by applying deep learning on small-scale biology 
datasets. 

Based on the data constructed in this study, LMI-DForest is compared 
with other machine learning classification models in the performance 
metrics. LMI-DForest has achieved comparable performance on the 
dataset with original features. In further studies, our proposed approach 
will be tested on more strictly experimental settings and applied on 
other more similar bioinformatics problems, such as various types of 

Fig. 3. The ROC curves yielded by LMI-DForest on 2-fold (2-CV), 5-fold (5-CV), and 10-fold (10-CV) cross-validation.  

Table 1 
Performances of different models based on lncRNA-miRNA interaction dataset.  

Methods Accuracy F1-measure Recall Precision 

LMI-DForest 0.9930 0.9445 0.9247 0.9653 
DeepForest 0.9387 0.8806 0.9355 0.8318 
Random Forest 0.9372 0.7357 0.9024 0.6210 
XGBoost 0.9375 0.8279 0. 9332 0.7440 
SVM (rbf kernel) 0.9217 0.8145 0.8296 0.8001  
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associations between ncRNAs, ncRNAs and disease, ncRNA and drug 
targets, small molecules and ncRNAs, genome analysis applications, etc 
(Ling et al., 2013; Chen et al., 2018; Bai et al., 2019; Wang et al., 2019b). 
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