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Abstract

Drug–target interactions (DTIs) play a crucial role in target-based drug discovery and development. Computational
prediction of DTIs can effectively complement experimental wet-lab techniques for the identification of DTIs, which are
typically time- and resource-consuming. However, the performances of the current DTI prediction approaches suffer from a
problem of low precision and high false-positive rate. In this study, we aim to develop a novel DTI prediction method for
improving the prediction performance based on a cascade deep forest (CDF) model, named DTI-CDF, with multiple
similarity-based features between drugs and the similarity-based features between target proteins extracted from the
heterogeneous graph, which contains known DTIs. In the experiments, we built five replicates of 10-fold cross-validation
under three different experimental settings of data sets, namely, corresponding DTI values of certain drugs (SD), targets (ST),
or drug-target pairs (SP) in the training sets are missed but existed in the test sets. The experimental results demonstrate
that our proposed approach DTI-CDF achieves a significantly higher performance than that of the traditional ensemble
learning-based methods such as random forest and XGBoost, deep neural network, and the state-of-the-art methods such
as DDR. Furthermore, there are 1352 newly predicted DTIs which are proved to be correct by KEGG and DrugBank databases.
The data sets and source code are freely available at https://github.com//a96123155/DTI-CDF.
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Introduction

Drug discovery is the process of identifying new candidate com-
pounds with potential therapeutic effects, during which the
prediction of drug-target interactions (DTIs) is an essential step.
Drugs play a significant role in the human body by interacting
with various targets. Proteins represent an important type of
target, and their functions can be enhanced or inhibited by
drugs to achieve phenotypic effects for therapeutic purposes
[1]. However, the number of approved drugs is relatively small,
mainly due to the possible adverse effects of the multi-targeting
of drugs. Currently, a large number of researches have focused
on DTI prediction because it is an essential tool in the con-
text of drug repurposing. Since experimental determination of
DTIs is both time- and resource-consuming, the development
of efficient computation methods is highly desirable to make
full use of the heterogeneous biological data of known DTIs to
understand the mechanism of action of drugs in the human
body.

Over the past decades, a substantial number of computa-
tional methods have been developed for the prediction of DTIs.
As suggested by a series of recent review articles [2–12], the brief
categorization of the available DTI prediction methods is sum-
marized in Figure 1. Early attempts in traditional approaches
for computational prediction of DTIs include the ligand-based
[13] and target-based [14] approaches. The ligand-based meth-
ods compare a query ligand to a set of known ligands with
target proteins. The prediction results of ligand-based methods
may become unreliable in cases when the number of known
ligands with target proteins is insufficient. The target-based
methods such as docking methods consider the 3D structures
of target proteins. However, these approaches are extensively
time-consuming and even cannot work when the structural
information is not available for some targets such as membrane
proteins. Moreover, dealing with the flexibility of a target protein
can be very challenging. Therefore, it is difficult to use the
target-based approaches on a genome-wide scale. To overcome
the limitations of traditional approaches and conduct large-
scale DTI prediction, the chemogenomic methods have attracted
much interest with the accessibility of big data sources such as
genome, phenome, drug chemical structures, biological inter-
actome, and biological bioassays, which provide a useful way
to extract different information from the drug side (chemical
space) and target side (genomic feature space) simultaneously
to predict novel DTIs.

Following the way to formulate the DTI prediction problem,
the chemogenomic methods can be divided into two major
classes of solving strategies: network/graph-based methods
[15–47] and machine learning-based methods [48–88]. In
network/graph-based methods, the interaction space of drugs
and targets is represented as a bipartite graph, in which the
nodes are drugs/targets and the edges are the interactions
between drugs and targets. Therefore, the graph-based and
network-based analysis methods can be applied in the task
of predicting novel DTIs to infer the missing links in the
graph/network. Similarly, the bipartite graph can be transformed
into an association matrix. The hidden associations can be
inferred by methods such as matrix factorization. Zhang et al.
[6] summarized the recent advances of network-based models

in predicting DTIs. In machine learning-based methods, the
problem of DTI prediction is formulated as a binary classification
task to predict whether a drug-target pair is DTI or not. On one
hand, the information about drugs and targets are represented
as features, and the interactions between drugs and targets
are denoted as class labels. On the other hand, the interaction
network inference problem can be transformed into a binary
classification task between drug-target pairs using pairwise
kernel functions. The recent machine learning-based methods
are composed of semi-supervised models and supervised
models. In semi-supervised machine learning-based methods,
they utilize both a small number of available labeled samples
(known DTIs in the data set) and a large number of unlabeled
samples (all the unknown DTIs in the data set). A few of semi-
supervised models were developed for DTI prediction, such as
NetLapRLS [49], NetCBP [87], and ILRLS [88]. Moreover, there are
a few other interesting methods, such as the text mining-based
method [89] and a two-layer graphical model (called restricted
Boltzmann machine) [90]. More recently, a number of deep
learning-based methods have been developed for DTI prediction
[91–95].

Motivated by the previous studies [96, 97], we develop a cas-
cade deep forest (CDF)-based model to further improve the per-
formance of predicting DTIs. In the proposed method, we firstly
utilize path-category-based multi-similarities features (named
PathCS) based on the heterogeneous graph of DTIs. Then, we
apply the CDF model under three experimental settings through
five repeated 10-fold cross-validation (CV) in four representative
data sets, and the performance evaluation is conducted by using
the AUPR, AUC, and F2-score metrics and the average among
them. Furthermore, the statistical hypothesis test is used to
evaluate the statistical significance of the results. Finally, we
verify that the proposed DTI-CDF method is significantly better
than the traditional ensemble learning-based approaches such
as random forest (RF) and XGBoost (XGB), deep learning-based
approaches such as the deep neural network (DNN), and the
state-of-the-art methods available (i.e., DDR [79]). More impor-
tantly, our method predicted 1352 new DTIs which have been
supported by KEGG and DrugBank databases.

Materials and methods

Data sets

In our work, the four data sets compiled by Yamanishi et al.
[15] were used as a benchmark to evaluate the performance of
the proposed DTI-CDF method in DTI prediction. The four data
sets are separated and named by the type of target proteins
of the drugs: enzymes (E), ion channels (IC), G-protein-coupled
receptors (GPCR) and nuclear receptors (NR). All drugs in these
data sets are approved drugs that were searchable at the KEGG
DRUG database [98] which is a comprehensive drug information
resource for drugs approved in Japan, the United States, and
Europe. These data sets contain known human DTIs retrieved
from the KEGG BRITE [98], BRENDA [99], SuperTarget [100], and
DrugBank [101] databases. These resources are highly reliable
so that the results obtained by the use of these data sets have
high reliability. Therefore, it is generally considered as the gold-
standard data sets.
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Figure 1. The categories of computational methods for DTI prediction.

Table 1. Summary of samples on the four data sets

Data sets Known interactions Unknown interactions Drugs Targets

NR 90 (6.41%) 1314 (93.59%) 54 26
GPCR 635 (3%) 20 550 (97%) 223 95
IC 1476 (3.45%) 41 364 (96.55%) 210 204
E 2926 (1%) 292 554 (99%) 445 664

In order to simulate more practically, we consider the entire
space of the DTIs in these four data sets. The known DTIs are
considered as positive samples, and the negative data contains
all unknown or non-existing DTIs. It is worth noting that the
number of positive samples is much lower than the number
of negative samples. Thus, these four data sets are severely
unbalanced, as shown in Table 1.

Feature construction

PathCS [79] is a hybrid feature based on the heterogeneous
weighted graph of DTIs, containing drugs, targets, and their
similarities or interactions. In this graph, the edge between two
target nodes or two drug nodes represents their similarities, and
the weight of the edge is the similarity value between two linked
nodes. The edge between a target and a drug denotes a known
DTI, and the weight is equal to 1.

There are six types of kernels used in this study to generate
similarity profiles for drugs and targets, defined as follows:

(i) Protein kernels. We use amino acid sequences of the proteins
to generate the spectrum kernel [102] and set the subse-
quence length k as 4.

(ii) Drug kernels. There are three side-effects kernels as drug
information sources. The first resource is obtained from the
SIDER [103] database, which contains information on mar-
keted drugs and their adverse reactions. For each side-effect
classification, a binary (absence or presence) profile was used
to represent drugs. The other two pharmacological profiles
are derived from the Food and Drug Administration’s adverse
event reporting system [104] on the basis of frequency and
binary information of side-effect classifications, respectively.
These three pharmacological profiles are used to generate
similarity profiles through the weighted cosine correlation
coefficient. And if a drug is not in the data resources, its
similarity is assigned as 0.

(iii) Gaussian interaction profile (GIP) kernels. Firstly, the interac-
tion profile of a drug is a binary vector based on the known
DTI network, in which the absence or presence of interaction
with every target in the network is assigned as 0 or 1 [50]. A
similar definition fits for the interaction profile of a target.
In the target interaction profile for drugs, the i-th column
represents the target interaction profile ydi

of the drug di.
Furthermore, the GIP similarity between a pair of drugs di and
dj can be computed between the two corresponding columns
of the target interaction profile:

KGIP
(
di, dj

) = e
−γd

∥∥ydi
−ydj

∥∥2

(1)

where the parameter γd controls the kernel bandwidth given by

γd = 1
nd

nd∑
i=1

∣∣ydi

∣∣2 (2)

where nd is the number of drugs. This kernel is independent of
the size of the data set because of normalization.

The GIP similarity between a pair of targets is calculated in
a similar way. However, the GIP kernel cannot be computed for
a new drug (or a new target), which does not have any targets
(or drugs) to interact with in the training data set. For the calcu-
lation of this kernel, we adopted the method of neighbor-based
interaction-profile inferring [23]. The inference of the similarity
of an unknown drug (or target) to a particular target (or drug) is
done using the five neighbors of the unknown drug (or target),
expressed as the ratio of the sum of the similarities of five
neighbors that interact with the particular target (or drug) to the
sum of similarities of all neighbors.

After obtaining the above similarity measures, the first step is
to combine the multiple similarity measures of drugs (or targets)
into one fused matrix [105] to build a heterogeneous DTIs graph
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Figure 2. This machine learning model is composed of an input feature vector, a CDF classifier, and a final prediction. In particular, CDF is the core unit of the model,

which has six variants in this study. In each variant, each layer consists of a different number of RF and XGB binary classifiers, and different layers own the same

structure. The figure shows one special model in which each layer has two RF learners and one XGB learner, denoted as RF2-XGB1. Other variants are RF2, XGB2,

RF1-XGB2, RF1-XGB1, and RF2-XGB2, respectively.

and then extract PathCS for each drug-target pair. The path
category is defined by a path structure that starts at a drug node
and ends up at a target node such as to set the path length to 2 or
3. Path categories are as follows: drug-drug-target, drug-target-
target, drug-drug-drug-target, drug-drug-target-target, drug-
target-drug-target, and drug-target-target-target. We define two
normalized matrices Nh

1 and Nh
2 according to the above six path

categories Ch, h = 1, 2, · · · , 6. For a specific drug di and a specific
target tj, we denote one path from di to tj as pq and the set
of paths is Rijh. In addition, the path between di and tj is built
by the intermediate nodes which are restricted to be the five
nearest neighbors of di and tj, respectively. Thus, the Nh

1 and Nh
2

with elements nh
1(i, j) and nh

2

(
i, j

)
, respectively, are computed as

follows:

nh
1

(
i, j

) =
∑

∀q:pq∈Rijh

∏
∀wx∈pq ,pq∈Rijh

wx∑
j

∑
∀q:pq∈Rijh

∏
∀wx∈pq ,pq∈Rijh

wx
(3)

nh
2

(
i, j

) =
max∀q:pq∈Rijh

∏
∀wx∈pq ,pq∈Rijh

wx∑
j max∀q:pq∈Rijh

∏
∀wx∈pq ,pq∈Rijh

wx
(4)

Classification algorithm

Firstly, we generate PathCS as the input feature vector for each
DTI. Secondly, a CDF classifier [106] is used to predict DTIs. In
this process, the new category probability vector in the previ-
ous layer and the original input feature vector are used as the
next layer input, and the final category probability vector is the
output through multiple learners. When building a CDF model
(Figure 2), it is important to determine the machine learner used
for each layer. In the model, we set the number of learners of
each layer from 2 to 6, and RF [107], which has presented satis-
factory performance in another classification task [108], and XGB
[109] are used as learners to follow the “good but distinguishable”
principle. In addition, the depth of layers is determined by the
trend of evaluation metrics.

Table 2. Summary of the corresponding DTIs information in the test
data of three experimental settings

Experimental
settings

Drugs Targets Interactions

SP Known Known New
SD New Known New
ST Known New New

Experimental settings

In this study, we evaluate three experimental settings as Table 2
shows, which include most of the conditions for DTI prediction.
For these experimental settings, SP, SD, and ST represent the
corresponding DTI values of certain drug-target pairs, drugs,
targets in the training set are missed but existed in the test
sets. In Table 2, the subjects which are new indicate that no
corresponding subjects exist in the training data.

Performance evaluation

In order to facilitate the comparison with other methods, we fol-
lowed previous studies [31, 79] as the benchmark and conducted
the 10-fold CV test for each experimental setting of each data
set, and the above process was repeated 5 times using different
random seeds. It is worth noting that the CV used in this study
is different from the traditional CV, i.e., the performance of the
test set is only used to evaluate the model performance but not
for model selection, which is like using a holdout test in each
experiment of the CV.

For each fold of each predictive model, the following metrics
are calculated:

Precision = TP
TP + FP

(5)
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Table 3. The hypothesis test results

Model/method Metrics n t0.05 (n − 1) t0 p-value δ

CDF versus DNN AUPR, AUC, F2-score 36 1.69 6.41 1.11E – 7 1.07
CDF versus RF AUPR, AUC, F2-score 36 1.69 6.56 7.02E − 8 1.09
CDF versus XGB AUPR, AUC, F2-score 36 1.69 7.05 1.60E − 8 1.18
DTI-CDF versus DDR AUPR, AUC 24 1.71 6.08 1.68E − 6 1.24

The DTI-CDF and DDR are the proposed method in this study and the state-of-the-art method, respectively.

True positive rate = Recall = TP
TP + FN

(6)

False positive rate = FP
FP + TN

(7)

Fβ − score =
(
1 + β2

) · Precision· recall
β2· Precision + recall

(8)

where TP is true positive, FP is false positive, FN is false negative,
and TN is true negative. We plot the precision-recall curve (PR
curve) based on different precision and recall, and the receiver
operating characteristic curve (ROC curve) based on different
recall and false-positive rate, respectively, under the condition
of different classified cutoff values. We define AUPR and AUC
as the area under the PR curve and the ROC curve, respectively.
Since the positive samples and negative samples in each data set
are highly unbalanced, the AUPR provides a better performance
estimate relative to AUC because it more severely penalizes the
false positives. On the other hand, AUC avoids the subjectivity
of threshold selection, as does AUPR. Therefore, we introduce
Fβ − score, and set β to 2, called F2-score, to increase the effect of
recall on this metric because small FN may reduce the possibility
that new DTIs cannot be identified. For each experiment setting
of each data set, the AUPR, AUC, and F2-score are calculated as a
measure of model performance as follows:

AUPR =
∑5

i=1

∑10
j=1AUPRi,j

50
(9)

AUC =
∑5

i=1

∑10
j=1AUCi,j

50
, (10)

F2 − score =
∑5

i=1

∑10
j=1F2 − scorei,j

50
(11)

where i represents the i-th repeated trials and j represents the j-
th fold of CV. In addition, the average of the above three metrics
can be calculated as a weighted performance metric [110].

Statistical hypothesis test

The statistical hypothesis test is used in this study to further
explore the statistical significance of the difference between
the proposed method and the other method. Differences in the
results of different prediction methods are caused by a vari-
ety of factors, such as data composition, training model, and
experimental setting. In order to exclude other factors and only
consider the differences caused by the point we considered, the
one-sided paired t-test that is a pairwise comparison method
based on paired data is employed. Firstly, the difference di∈D of
performance metrics, such as AUPR, AUC, and F2-score, based
on 12 experimental conditions (i.e., four data sets under three
experimental settings) between the two methods are calculated.
It is assumed that the difference di are all from the normal
distribution N(μd, σ 2), where both μd and σ 2 are unknown. Then,
a statistical hypothesis test is performed based on the data

Figure 3. The structure of the DNN used in this study. The Dense represents the

fully connected layer, RELU and Sigmoid are activate functions.

obtained above. If the two methods are no different on per-
formance, the difference di between each pair of data belongs
to a random error, and the random error can be considered to
obey a normal distribution with a mean of zero. Assuming that
there is no difference between the above two methods, the test
hypothesis is as follows:

H0 : μd = 0, H1 : μd > 0 + Δ (12)

By the t-test of a single population means using the normal
distribution, the rejection domain is:

t = D
s/

√
n

≥ tα (n − 1) (13)

where D is the mean of the sample, s is the SD of the sample, n is
the sample size, α is the significance level, and � is equivalent to
the effect size of mean difference, defined as � = ud/σ . In order
to ensure that only when the proposed method is far superior
to another, it can be tested with a high probability 1 − β; we set
α = 0.05, � = 0.9, and β = 0.01. Under these conditions, a sample
size n not less than 21 is required. The rejection domain and the
actual effect size of mean difference are

t = D
s/

√
n

≥ t0.05 (n − 1) (14)
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Figure 4. The comparison of DNN, RF, XGB, and CDF in four data sets such as NR, GPCR, IC, E under three experimental settings (i.e., SP , SD and ST). The evaluation

metrics are AUPR, AUC, F2-score and the average of them.
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Figure 5. The performance comparison of six combinations of RF and XGB in a layer of the CDF model in four data sets such as NR, GPCR, IC, E under three experimental

settings (i.e., SP, SD and ST), including two RFs (RF2), two XGBs (XGB2), one RF and one XGB (RF1-XGB1), one RF and two XGBs (RF1-XGB2), two RFs and one XGB (RF2-XGB1),

and two RFs and two XGBs (RF2-XGB2). The value represents the average of AUPR, AUC, and F2-score.

δ = D
s

(15)

Substituting di into the above formula yields the observed
value t0 of t; then the p-value of the right-tailed t-test can be
calculated by

p = P {t ≥ t0} (16)

Results and discussion

Comparison of CDF model with the deep
learning model

Recently, DNN or deep learning has achieved great success in
many areas including bioinformatics [111]. However, it still has
apparent deficiencies. It is well known that the training of DNN
usually requires a large amount of data, so its implementa-
tion on tasks with small-scale data is difficult. Although we
are in the era of big data, many practical tasks still lack a
sufficient amount of labeled data due to high labeling cost,
resulting in poor performance of DNN in these tasks. Secondly,
DNN is a very complex model, and the training processes often
require powerful computing devices. More importantly, DNN
has too many hyper-parameters, and the learning performance
is heavily dependent on their careful tuning that makes the
training very difficult. In addition, the theoretical analysis of
DNN is extremely difficult because too many interference fac-
tors are combined with almost unlimited parameter configura-
tions. As a large amount of training data is used in DNN, and
the learning ability of the model must be large, we can con-
clude that DNNs are more complicated than ordinary learning
models.

In this study, we developed a CDF model [106] with which it
is possible to achieve performance that does not have the above
drawbacks and can compete with DNN. It is a deep ensemble
framework that cascades traditional machine learning models
(such as RF and XGB). Compared to DNN, the CDF model has
fewer hyper-parameters, and it is easier to train. In addition,
unlike most types of DNN with fixed model complexity, the
CDF model can stop the increase of the number of layers by
terminating the training properly, and the complexity of the
model can be adaptively scaled, making the CDF model not
limited to large-scale training data but also on small-scale train-
ing data. Moreover, if a tree-based approach is chosen as the
base-learner, CDF will be easier to theoretically analyze than
DNN.

To clarify the superiority of the CDF model compared with
DNN whose structure is shown in Figure 3, we compared them
in this study, and the results are shown in Figure 4. It has been
shown in our experiments that CDF achieved highly competitive
performance in comparison to DNN since all results in different
experimental conditions are better than that of DNN. The reason
may be that the sample sizes of the four data sets used in this
study ranged from 103 to 105. In addition, the number of positive
and negative samples in each data set is highly unbalanced;
too few positive samples make DNN which is based on a large
amount of training data unable to exert its advantages. More-
over, the feature dimension used in this study is low, and deep
learning has great advantages in the representation learning of
ultrahigh dimensional data.

Furthermore, we use the one-sided paired t-test, and the test
results (such as p-value) are listed in Table 3. It is shown that the
performance of CDF is significantly better than that of DNN on
this task.
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Figure 6. The comparison of the proposed DTI-CDF method with the state-of-the-art DDR method in four data sets such as NR, GPCR, IC, E under three experimental

settings (i.e., SP, SD and ST).

Comparison of CDF model with the traditional
ensemble learning model

One of the main types of classification methods in machine
learning is ensemble learning which completes learning tasks
by constructing and combining multiple learners. The ensemble
learning is usually possible to obtain generalization performance
superior to that of a single learner and to solve the imbal-
anced classification problem to some extent. According to the
generation method of individual learners, the current ensemble
learning methods can be divided into two categories: boosting
and bagging, which are focused on reducing bias and variance,
respectively. In order to construct a CDF model with low variance
and low deviation, this study combines boosting (i.e., XGB) and
bagging (i.e., RF) where XGB and RF are chosen as the base-
classifiers.

XGB is a scalable tree boosting method that adds regular
terms to the cost function, which can control the complex-
ity of the model and prevent overfitting. At the same time,
it uses a second-order Taylor expansion approximation to the
cost function, which makes the approximation of the objective
function closer to the actual value, thus improving the prediction
accuracy. In addition, the calculations of XGB can speed up by
using some techniques, such as column subsampling [109].

On the basis of bagging, RF introduces the random feature
selection in the training process of the decision tree. That is, the
diversity of the RF not only comes from the sample disturbance
but also from the feature disturbance, and this improves the
generalization performance. Moreover, RF is easy to implement
and exhibit powerful performance in many real-world tasks,
especially in bioinformatics.

In this study, we use these two base-learners as the bench-
mark models in order to compare the CDF model with the
traditional ensemble learning models. The results (Figure 4) indi-
cate that the CDF model is superior to RF and XGB under all
experimental conditions. The reason is that the diversity and
complementary of base-learners of the CDF model improve the
classification performance. Moreover, the multilayer character-
istics of CDF are more fully exploited for features.

In order to obtain the significance level between the CDF and
RF model as well as the CDF and XGB model, we also carried out
the hypothesis test. For the above two results (Table 3), we can
reasonably believe that the CDF model performed significantly
better than RF and XGB.

It is worth noting that in order to reduce the complexity of
the model, only RF and XGB are considered as base-learners in
this study. In the future, all possible individual learners can be
enumerated, and individual learners with the best classification
effect can be selected for the ensemble.

Effect of the combination of base-learners in CDF model

In the previous study, we have demonstrated the optimal perfor-
mance under the test set by using one of the architectures of CDF.
Moreover, in order to clarify the robustness of our model, we first
validated the other different architectures of CDF on the NR data
set and found that the prediction performance is approximately
equal to the optimal one we have discussed as shown in Figure 5.
Thus, it demonstrates the robustness of our CDF model against
the model selection, which will avoid the large amount of work
in the parameter tuning. More significantly, we further perform
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Table 4. Summary of the predicted and new reported DTIs of the four
data sets, including the number, the number that has been reported
by the KEGG and DrugBank databases

Data sets Predicted DTIs New reported DTIs

KEGG DrugBank Total

NR 84 55 72 74
GPCR 500 229 303 338
IC 1158 322 284 460
E 1650 299 326 480

the experiment on other data sets. It is found that the prediction
accuracy is approximated to be equal with each other as Figure 5
shows. It indicates that our CDF model preserves the universality
over different data sets such that it can be migrated to other
DTI applications. It indicates that the CDF model is not very
sensitive to parameter settings. Thus, we do not need to conduct
the large-scale parameter tuning including the selection of the
optimal combinations of base-classifiers, which is also one of
the advantages when compared to DNN.

Comparisons with the state-of-the-art algorithm
(DTI-CDF versus DDR)

For the four data sets in this work, the DDR method is proved
as the most powerful approach in the prediction of DTIs under
the same experimental conditions (i.e., five repeated trails of
10-fold CV under three experimental settings of each data set).
Therefore, in the present study, we only compare our method
DTI-CDF with DDR. The experimental results demonstrate that
DTI-CDF achieves better performance than DDR under the same
conditions (Figure 6).

In order to validate the significant difference between DTI-
CDF and DDR, we also carried out the one-sided paired t-test.
The test results are listed in Table 3. It is shown that the DTI-
CDF method is significantly better than the DDR method.

Predicted DTIs reported in KEGG and DRUGBANK
databases

In order to evaluate the utility of the DTI-CDF method, it is
possible to effectively predict DTIs that are real but not yet con-
tained in the data sets of this study (called new DTIs). We refer
to the KEGG and DrugBank databases, and the DTIs predicted
by the DTI-CDF method on the four data sets are searched,
confirming that 1352 new DTIs are supported by the refer-
ence databases (Table 4), and the information of these new DTIs
is publicly available at https://github.com/a96123155/DTI-CDF/
tree/master/3_new_DTIs. This reflects the credibility of the DTI-
CDF method, and other DTIs that have not yet been reported but
are predicted by the method are likely to be real.

Conclusions

Identification of DTIs is fundamental to both new drug dis-
covery and new uses for existing drugs. In the present study,
we propose a DTI-CDF method to predict DTIs, which utilizes
similarity information for drugs and targets as the input of
our algorithm for DTIs prediction. We use AUPR, AUC, F2-score,
and their average to evaluate the performance of the DTI-CDF
method under three different experimental settings based on

gold-standard data sets, and almost all of them are superior to
the current top-performing method DDR. It is further proved
that the performance of the DTI-CDF method is significantly
better than other existing methods when a known DTI is missing
from the training data, especially in searching targets for new
drugs (SD setting) and finding drugs for new targets (ST setting).
Experimental results further demonstrated that the DTI-CDF
method presents higher predictive performance than the deep
learning-based method, such as DNN, and traditional ensemble
learning models such as RF and XGB. Moreover, 1352 predicted
new DTIs are proved to be true cases by KEGG and DrugBank
databases.

More recently, various types of noncoding RNAs (ncRNAs)
have been identified. Increasing evidence has shown that these
ncRNAs may affect gene expression and disease progression,
making them a new class of targets for drug discovery. It thus
becomes important to understand the relationship between
ncRNAs and drug targets and further identify the association
between small molecules and ncRNAs [112–116]. On one hand,
we will extend the data sets to include the new type of targets
(i.e., ncRNAs) and work on the prediction of drug-ncRNA
interactions. On the other hand, most of the computational
methods have focused on the binary classification problem to
predict whether a drug-target pair interacts or not. However,
there are very few computational approaches that can predict
the drug-target affinity [117, 118], which will be explored in our
future work.

Key Points
• Prediction of DTIs is very important in drug discov-

ery, especially using computational methods such as
machine learning methods. A dominant issue in the
prediction of DTIs is the absence of a list of true negative
samples.

• The proposed DTI-CDF method extracts features from
the heterogeneous DTI weighted graph as an input
feature vector of the CDF-based model.

• DTI-CDF method uses more than one source of infor-
mation at a time. Different aspects of drugs and tar-
gets are represented by these sources and are used
simultaneously to improve prediction performance.

• CDF is a courageous attempt in the field of predicting
DTIs, which enables the deeperization of traditional
machine learning models and better performance
than traditional ensemble learning and deep learning
methods.

• DTI-CDF method achieves the best performance in dif-
ferent data sets and prediction settings, indicating the
robustness of the method.

• There are 1352 predicted new DTIs that have been sup-
ported by KEGG and DrugBank databases, which indi-
cates the usefulness of the proposed DTI-CDF method.
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