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Abstract

Identifying drug-target interactions (DTIs) is an important step for drug discovery and drug repositioning. To reduce the
experimental cost, a large number of computational approaches have been proposed for this task. The machine
learning-based models, especially binary classification models, have been developed to predict whether a drug-target pair
interacts or not. However, there is still much room for improvement in the performance of current methods. Multi-label
learning can overcome some difficulties caused by single-label learning in order to improve the predictive performance. The
key challenge faced by multi-label learning is the exponential-sized output space, and considering label correlations can
help to overcome this challenge. In this paper, we facilitate multi-label classification by introducing community detection
methods for DTI prediction, named DTI-MLCD. Moreover, we updated the gold standard data set by adding 15,000 more
positive DTI samples in comparison to the data set, which has widely been used by most of previously published DTI
prediction methods since 2008. The proposed DTI-MLCD is applied to both data sets, demonstrating its superiority over
other machine learning methods and several existing methods. The data sets and source code of this study are freely
available at https://github.com/a96123155/DTI-MLCD.
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Introduction

In order to reduce drug development cost, drug discovery (i.e.,

to find new candidate drugs) and drug repositioning (i.e., to find

new indications for existing drugs) are two important strategies

[1]. An important step to achieve these goals is to predict drug-

target interactions (DTIs). In recent years, a large number of

studies have applied the popular machine learning technology

to realize intelligent medical treatments, which has accelerated

the process of drug development to a certain extent.

Over the past decade, a great number of computationalmeth-

ods have been developed for the prediction of DTIs. There are

some review articles [2–7] summarizing the progress of machine

learningmethods in the DTI prediction task, and the binary clas-

sification method is an important branch. For the binary clas-

sification methods [8–41], the drug-target pairs and whether or

not the interactions exist between them are regarded as samples

and labels, respectively. In addition to the binary classification

methods, there exist network inference methods [42–55], matrix

factorization methods [56–64], kernel-based methods [65–69],

the restricted Boltzmannmachinemethod [70], the collaborative

filtering method [71], the clustering method [72], and the label

propagation method [73], etc. It is worth noting that many of

these latter methods can be considered as binary classification

methods. For example [8], the network inferencemethod regards

the DTI prediction task as a bipartite network inference problem,

and infersmissing edges to achieveDTI prediction. If themissing

edges are regarded as negative samples and the existing edges

are regarded as positive samples, it is converted into a binary

classification problem.

The binary classification methods are trained on a bench-

mark data set which consists of positive and negative samples. If

the unknown DTIs are treated as negative samples, it can bring

noise since some unknown DTIs may be experimentally verified

as positive DTIs in the future [74]. Moreover, following the multi-

target multi-drug paradigm, a drug can interact with more than

one target protein, and a target protein can interact with more

than one drug. Therefore, the drug-target interaction prediction

can be formulated as a multi-label classification task. From the

machine learning point of view, the binary classification models

do not consider the possible correlations among the labels,

which may contain crucial information to increase the precision

of the predictions [75].

To overcome the above difficulties, the application of multi-

label learning to DTI prediction problems is worth exploring.

The multi-label classification problem trains a model that maps

the input feature vector to more than one label. In multi-label

classification, m drugs (or n targets) are regarded as samples,

and n targets (or m drugs) are considered as labels. The samples

(i.e., drugs or targets) are characterized as the input feature

vectors. Then a multi-label learning algorithm is used to predict

drug targets (or drugs that can interact with the specific target).

The experimental results in this study demonstrated that it

outperforms the traditional binary classification models, and

its speed is much higher than that of the binary classification

method, especially for large data sets. Until now, there are few

applications to exploremulti-label learning in the DTI prediction

problem. DrugE-Rank [76] is a method using the ‘Learning To

Rank’ paradigm to model the DTI prediction problem as a multi-

label task. A study [77] uses multi-task deep neural networks

for drug targets prediction, and firstly uses extended connec-

tivity fingerprints with radius 12 as the drug representation. To

overcome the training difficulties caused by too many labels in

multi-label learning, Pliakos et al. [75] proposed threemulti-label

learning methods for DTI prediction, which used k-means for

label division.

Moreover, the gold standard data set currently used in the

field of DTI prediction is the data set collected by Yamanishi et al

in 2008 [78], named Yamanishi_08. Over the past 12 years, a large

number of new DTIs have been discovered, but they were not

fully explored as training samples. As is well known, positive

samples (i.e., DTIs) are essential for model construction. The

incompleteness of positive samples not only introduces error

in the modeling process, but also hides a great risk of false

negatives during the model evaluation, making the unknown

bias between predictions and the actual results. For this point,

Keum and Nam [11] updated these data sets among the original

drugs and targets. However, in reality, it cannot be limited to the

original drugs and targets, and the DTI between new drugs and

new targets should also be considered.

This study updates the gold standard data set of drugs,

targets, and DTIs as of December 2019. In addition, we propose

the multi-label learning with community detection method

for DTI prediction (DTI-MLCD) and tested it on four original

and updated gold standard data sets. The proposed DTI-MLCD

first uses the community detection algorithm to divide the

label space into multiple subspaces, then applies multi-label

learning on each subspace, and finally performs DTI prediction.

Comparisons with traditional machine learning methods and

other previously published DTI prediction methods confirm the

effectiveness of the proposed DTI-MLCD method. The workflow

is shown in Figure 1.

Materials and Methods

Problem description

This study divides the DTI prediction problem into two sub-

tasks: (a) drug repositioning, which predicts new targets for

existing/old drugs, named TT; (b) drug discovery, which predicts

new drugs for known targets, named TD. These two tasks are for-

mulated as multi-label classification problems, described below

and shown as Step 2 in Figure 1.

For task TD, suppose XD = Rd and YT = {y1, y2, . . . , yp} denote

the d-dimensional drug instance space and the label space with

p possible target class labels. In YT, 0 means unknown or non-

existing DTIs (i.e., negative data), and 1 means known DTIs (i.e.,

positive data). This task is to learn a function f : XD → 2YT from

the multi-label training set D =
{(

xD,i, yT,i

)

|1 ≤ i ≤ m
}

, where m

is the number of samples. For each sample
(

xD,i, yT,i

)

, xD,i ∈ XD,

it is a d-dimensional feature vector and yT,i ∈ YT is the label set

associated with xD,i. For drug instances of the test set, the multi-

label classifier f
(

·
)

predicts the proper labels. The task TT can be

defined by analogy.

Data sets

Yamanishi_08 is the data set proposed in 2008, which is widely

used in the field of DTI prediction as the gold standard data

set. It collects and integrates DTI data from KEGG BRITE [79],

BRENDA [80], SuperTarget [81], and DrugBank [82] databases

released in 2008. It consists of four DTI data sets according

to the classes of protein targets, which are nuclear receptor

(NR), G-protein-coupled receptor (GPCR), ion channel (IC), and

enzyme (E). To update these data sets, we collect new drugs,

new targets, and new DTIs using KEGG BRITE, UniProt [83], and

DrugBank databases in this study. The workflow contains two
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DTI-MLCD: predicting drug-target interactions using multi-label 3

Figure 1. The flowchart of the proposed DTI-MLCD framework consists of four main steps: (1) update the gold standard data set, (2) construct multi-label sample set

for drug and target data set, (3) execute community detection algorithm on a weighted label co-occurence graph to divide the label space into several subspaces, and

(4) execute Label Powerset algorithm with random forest as base classifiers for each divided label subspaces. Then, assemble the classifiers to an integrated model.

Finally, evaluate the model performance based on stratified cross-validation (CV), independent test, and AUC and AUPR.
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Table 1. Statistics of the original and updated four data sets. The NR is short for the nuclear receptor, GPCR for the G-protein-coupled receptor,
IC for the ion channel, and E for the enzyme. Besides, the n represents the amount, D represents degree, and the subscripts d and t represent
drug and target, respectively

Data sets nd nt ninteraction Density (%) Dd Dt Dd =1 (%) Dt =1 (%)

NR Original 54 26 90 6.41 1.67 3.46 72.22 30.77

Updated 541 33 886 4.96 1.64 26.85 65.99 18.18

GPCR Original 223 95 635 3.00 2.85 6.68 47.53 35.79

Updated 1680 156 5383 2.05 3.20 34.51 46.13 14.74

IC Original 210 204 1476 3.45 7.03 7.24 38.57 11.27

Updated 765 238 6385 3.51 8.35 26.83 21.70 8.82

E Original 445 664 2926 0.99 6.58 4.41 39.78 43.37

Updated 1777 1411 7371 0.29 4.15 5.22 45.24 37.99

main stages: data integration and data cleaning. Data integra-

tion is achieved through web crawler technology. First, the DTI

data corresponding to the 4 types of targets is obtained from

the KEGG BRITE database and merged with Yamanishi_08 to

prevent the loss of information in the SuperTarget and BRENDA

databases. Then, we use the UniProt database as the connection

database of KEGG BRITE and DrugBank, search the DrugBank

database for each target obtained in the previous step, and add

drugs and corresponding DTIs that are not in KEGG BRITE and

Yamanishi_08. Next, we search all known drugs one by one

to maximize the DTI integrity of existing drugs and targets.

After obtaining the integrated data, we deleted useless, invalid,

and redundant data, including non-small molecule drugs (such

as biotechnology drugs), mixed drugs, drugs with the same or

unknown structure, and drugs with unknown end groups in

the structure. It is worth noting that all drugs in the updated

data set are approved drugs. The code for updating the data set

is freely accessible at https://github.com/a96123155/DTI-MLCD.

Some statistics of the original gold standard and the newly

updated four data sets are shown in Table 1.

In addition, the independent test set is built. For task TD,

drugs and their DTIs that do not exist in the Yamanishi_08 data

set but exist in the updated data set will be used as independent

test samples. The independent test set of task TT is constructed

similarly.

Features

Drug representation

Various types of representation can be used to describe drugs.

In general, these can be categorized into two types: molecular

descriptors (MDs), and molecular fingerprints (MFs). To explore

the drug representation that is most suitable for this study, we

used some open source tools commonly used in DTI prediction

to generate MDs and MFs. For the MDs or MFs generated by

different tools, this study treats them as different drug repre-

sentations. The tools used in this study are CDK [84], Pybel [85],

RDKit [86], and PaDEL [87]. The MDs generated by the above

tools are called MD_CDK, MD_PYB, MD_RDK, and MD_PAD. Their

dimensions are 275, 24, 196, and 1875, respectively. Further, we

combine these four types of MDs as a new type of MD, called

MD_MER. Currently,MFs are always divided into three categories

[88]: (a) topological path-based fingerprint. The representative

FP2 [89] (MF_FP2) is used in this study; (b) topological circular fin-

gerprint. ECFP4 [90] (MF_EC4) and ECFP8 [90] (MF_EC8) are used as

representatives; (III) substructure key-based fingerprint. MACCS

[91] (MF_MAC) and PubChem fingerprint [92] (MF_PCP) are used

because of their popularity in DTI prediction. Their dimensions

are 1024, 2048, 2048, 167, and 881, respectively. In addition to the

MDs and MFs, we also used the Word2vec-inspired feature [33]

(W2V), which extracts semantic information from drug SMILES.

Further, we combine the above three types of features, since

the complementarity among these three types of features may

help enhance performance. In this process, we use the fea-

ture selection to obtain clean, highly complementary, and less

redundant but combined features.

Target representation

This study uses three types of sequence-derived features to

represent protein targets. The first type of feature is Compo-

sition, Transition, and Distribution (CTD), which is represented

as the 504-dimensional feature vector generated by using the

PROFEAT web server [93]. The second type of feature (named

PRO) is composed of 1437 default protein descriptors generated

by PROFEAT.There aremany studies using CTD [76] or PRO [12, 23,

24, 41] as the target representation method. Besides CTD, it also

includes amino acid composition, dipeptide composition, auto-

correlation, quasi-sequence-order, amphiphilic pseudo-amino

acid composition, and total amino acid properties. The third

type of feature is the protein domain fingerprint (PDF), which is

extracted from the PFAM v31.0 database [94]. For different data

sets, we extracted different numbers of domains. The dimen-

sions of feature vectors for the targets in NR, GPCR, IC, and E

are 30, 61, 1404, and 2182, respectively. We also combined these

three different types of features.

Methods

Traditional binary classification (single-label learning) can be

regarded as a degenerated version of multi-label learning since

each sample is assigned to only one single label [95]. However,

the generality of multi-label learning makes it harder to design

the algorithm. The exponential-sized output space is the core

issue of learning, i.e., there are 2m possible label sets form labels.

For this purpose, this study applies the community detection

method from social networks to divide the whole label space

into several smaller label subspaces. Next, each divided label

subspace corresponds to a multi-label learning sub-problem,

andmultiple Label Powerset (LP)multi-label classifiers are joined

to cover the entire label space. The base learner applied in LP is

the random forest (RF) because of its simplicity, parallelism, and

superior capabilities in DTI prediction tasks [12, 25, 27, 96]. In this

section, we will introduce the typical algorithms of multi-label

learning and community detection. The execution steps of the

proposed DTI-MLCD method are shown as Step 3 and Step 4 in

Figure 1.
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Algorithms of multi-label learning

The development of multi-label learning algorithms is the key

challenge in multi-label learning research, although there has

been a boom in the various kinds of algorithms in the last

decade. A simple categorization is described as follows.

The first category is the algorithm adaptationmethod,which

works by fitting the existing algorithm to data and directly

tackles the multi-label data. The representative algorithm is

Multi-Label k-Nearest Neighbor (MLkNN) [97]. MLkNN is a lazy

learning method based on the traditional k-Nearest Neighbor

algorithm. It is now widely used in multi-label classification

prediction tasks and has achieved satisfactory performance [98,

99]. The second category is the problem transformation method,

which works by fitting data to a well-established algorithm and

transforming multi-label learning problems into other learning

techniques. Binary Relevance (BR) [100], Classifier Chains (CC)

[101] and Label Powerset (LP) [102] are representative algorithms

in this category. BR transforms the multi-label learning problem

intomultiple independent binary classification problems,where

one binary classifier corresponds to one label. It is based on the

assumption that labels are independent of each other. However,

there may exist correlations among labels in many fields, which

is a limitation of the BR. CC is based on BR to exploit label

correlations. It converts the multi-label learning problem into

a chain of binary classification problems. The main idea is to

add the labels of all previous classifiers to the feature vector

of the next training set and pass them to the next classifier.

Obviously, the order of labels has a great influence on the pre-

diction result. However, the order of labels in the classifier chain

is always random. Unlike BR and CC, LP transforms the multi-

label learning task into amulti-class or single-label classification

task. In other words, LP models the joint distribution of labels.

It treats each label subset in the multi-label training set as a

class of a multi-class task, and the prediction will be one of

these subsets. Although LP is simple, it has two impractical

points that tend to cause over-fitting. One is incompleteness.

It can only predict label sets appearing in the training set,

and is unable to predict the unknown label sets. The other

is inefficiency. As the number of labels increases, it may face

high complexity because of the increase in the number of label

subsets, and the high imbalance of samples in each class or

subset.

To overcome the shortcomings of LP while retaining its sim-

plicity, the idea that dividing the label space into multiple sub-

spaces and applying the LP algorithm in these subspaces has

been proposed [103], which can be seen as combining ensemble

learning with LP. This is the design principle of random k-

labelsets (RAkEL) [103]. RAkEL divides the overall label set into

multiple size-k label subsets randomly and implements LP on

each label subspace to ensure computational efficiency. Then, it

assembles several LP classifiers to guarantee the completeness

of the prediction. However, an obvious disadvantage of RAkEL is

the random partition strategy,whichmakes the label correlation

controlled only by k, without considering the whole structure of

the training data.

To consider the correlation among labels informatively, the

data-driven clustering algorithm is used instead of the random

partition strategy.Moreover, it has been confirmed that the data-

driven method is superior to random selection for the label

space division in multi-label classification problems [104]. Espe-

cially, the community detection method, which divides the label

space in a data-driven manner, has well been applied to mul-

tiple benchmark data sets for multi-label learning [104]. Thus,

this study discusses the application of five classic community

detection algorithms in DTI prediction.

Execution of community detection

The process of community detection is to find tightly connected

community structures in complex network structures, that is,

to discover clusters of nodes in the network [105]. In this study,

the goal of using the community detection method is to divide

label space with a data-driven approach. For this purpose, the

community detection method is built based on the weighted

co-occurrence graph derived from the training data.

Construct the weighted label co-occurrence graph. Defining the

weighted undirected co-occurrence graph, where vertices

represent the label set, edges represent label pairs that occur

together at least once in the training label set, and the weight

assigned to each edge is defined as the number of samples

that have both labels. The visualization of the weighted label

co-occurrence graph is shown as Step 3 in Figure 1.

Algorithms of community detection. The fast greedy algorithm (FGA)

[106] is a modularity-based algorithm based on the greedy

approach. It treats each node as a singleton community at

the beginning. Then, it iteratively searches the maximization

of modularity. With each iteration, this method merges two

communities to achieve the greatest contribution to modularity.

When the modularity can no longer increase as the community

merges, it is defined as converged.

The multi-level algorithm (MLA) [107] is also a modularity-

based algorithm with a different greedy approach for the mod-

ularity optimization. At the beginning, a different community is

assigned to each node. Then, by moving a node to the commu-

nity where one of its neighbors is located, the greatest contribu-

tion tomodularity is achieved.The above steps are repeated until

modularity is not increased by any movement. Each community

is considered as a single node, and then the process enters the

next level. When there is only one node or the modularity can

no longer be increased, the algorithm will stop.

The label propagation algorithm (LPA) [108] is a diffusion-

based algorithm based on the graph semi-supervised learning

algorithm, which simulates the diffusion of flow on a network

through the diffusion of labels. At the beginning, each node is

assigned a unique label (or community). Next, the label of every

node is updated iteratively with the majority label assigned to

its neighbors. The update order for each iteration is random.

The convergence criterion of the algorithm is reached when all

node labels are consistent with the most frequent labels in their

neighborhood.

Thewalk trap algorithm (WTA) [109] is a node similarity-based

algorithm based on random walks. One intuition is that when

performing short distance random walks on a graph, it is easy

to fall into the same community. At the beginning, each node

is considered as a community. Then the random walk distance

between all communities with connected edges is calculated.

Next, two communities that are connected and have the shortest

randomwalk distance are merged. The above steps are repeated

until all nodes are put into the same community.

The infomap algorithm (IMA) [110] is a compression-based

algorithm based on random walks. It believes that a good com-

munity division should make the average description length

of the information flow the shortest. It divides the graph by

calculating the minimum value of the map equation, where

the map equation corresponds to the length of the information

description corresponding to the partition.
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Table 2. Themerits, demerits and computational complexity of five community detection algorithms for the network with N nodes and E edges

Algorithm Merits Demerits Computational complexity

FGA Fast. Resolution-limit and coarse results,

usually used as a first approximation.

O(Nlog2(N))

WTA Stable performance in small and large

networks.

Slower, inaccurate compared to IMA and

MLA.

O(EN2)

LPA Simple, performs accurate in small

networks. It scales computing time better

on network size in log–log scale.

Large variance with unstable results,

requires large number of initializations

and slow, inaccurate in large networks.

O(E)

MLA Faster and have reasonable computation

speeds on large networks. Relatively

accurate in small and large networks.

Likely to provide the wrong number of

communities for large networks.

O(NlogN)

IMA Theoretically sound and accurate in small

networks.

Slow especially in large networks. Very

likely to provide the wrong number of

communities for large networks.

O(E)

Obviously, these algorithms are implemented based on differ-

ent definitions of the community [111]. In this study, we tested

these five typical community detection algorithms and summa-

rized their advantages, disadvantages and computational com-

plexity through related researches [104, 111–113] (Table 2).

Performance evaluation

The performance evaluation metrics of multi-label learning are

much more complex than binary classification [95]. Following

previous research, this study adopts AUC and AUPR as perfor-

mance evaluation metrics that are convenient for comparison

with othermethods.AUC is the area under the receiver operating

characteristic curve based on different recall and false positive

rate under the condition of different classified cutoff values.

AUPR is the area under the precision-recall curve based on

different precision and recall under the condition of different

classified cutoff values. It is worthwhile to note that AUPR

is a reliable metric as a severe punishment on false positive

instances for highly imbalanced data. Therefore, the discussion

in this article focuses on AUPR.

Stratified cross-validation (SCV)

Cross-validation is a typical method to do model selection. For

multi-label data, many labels have class imbalance character-

istics [114] that each data set has a large number of label sets,

and most label sets only contain a small number of samples

(Table 3). In this case, the random partitioning strategy used

in standard cross-validation may result in some labels without

positive samples in a divided subset. Such a subset will not

only affect the accuracy of the model, but may also cause a

computational error.

To overcome the above dilemma,a stratified sampling strategy

in cross-validation is a proven solution [114, 115], called stratified

cross-validation (SCV). Furthermore, the 10-fold SCV has proven

to be the best method in model selection from the perspec-

tive of statistical inference [115]. To ensure the confidence of

the results, we performed 5 simulations on 10-fold SCV using

different random seeds.

Hypothesis test

When comparing multiple algorithms on a set of data sets,

Demšar [116] recommends using the non-parametric Friedman

rank test [117, 118] which is based on a ranking algorithm.

However, the Friedman rank test can only tell us whether there

is a significant difference among algorithms, but cannot specify

which algorithms have performance differences. Therefore,

post-hoc analysis is needed to locate specific algorithms

with differences. For the Friedman rank test, the commonly

used post-hoc test method is the Nemenyi test [119], named

Friedman-Nemenyi test. This method can indicate whether

there is a significant difference between the two algorithms

based on the significance level α.

Results and Discussion

Selecting drug representation

We assume that for different data sets, the most suitable drug

representation method is different. So far, no other studies have

explored this, and our following experiments prove this con-

jecture. This phenomenon makes us apply different feature

representation methods on different data sets.

To achieve this goal, an experiment is conducted on the basic

learning algorithm of LP for each updated data set, and the same

parameter settings were used. The AUPR and AUC are shown in

Table 4. However, AUPR is the focus as it is more reliable, and its

lower value is more valuable than high AUC for discussion and

comparison.

For MDs, on the four data sets, as the dimension of drug

representation increases, the prediction performance tends to be

higher because it describes more information. For MFs, MF_EC4

is the best MF among all four data sets, and it has been proved

that it is sufficient to describemolecules [120]. Further, the result

reveals that the topological circular fingerprint is better than the

other two categories in this study. Next, the feature combination

procedure has been performed. There are 4 combinations of

MD_MER, MF_EC4, and W2V. Table 4 indicates that the perfor-

mance of any drug representation after adding W2V was lower

than that without W2V.

For different data sets, this study selects the drug representa-

tion with the best AUPR as the feature vector. For NR and GPCR,

MF_EC4 was used. For IC and E, we used the combination of

MF_EC4 and MD_MER.

Selecting target representation

We have adopted the same strategy as for the drugs, that is,

there is no best target representation method, only the most

suitable feature representation in a specific situation. Therefore,
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Table 3. Statistics for labels of eight multi-label data sets. The data in the table is the number of corresponding row and column headings. For
the Data sets column, the NR is short for nuclear receptor, GPCR for G-protein-coupled receptor, IC for ion channel, and E for enzyme. For the
Tasks column, the TD is predicting new drugs, TT is predicting new targets

Tasks Data sets Label sets Samples per label set Samples per label

min mean max min mean max

TD NR 77 1 7.0 132 1 26.8 159

GPCR 352 1 4.8 135 1 34.5 249

IC 280 1 2.7 67 1 26.8 144

E 692 1 2.5 102 1 5.2 154

TT NR 31 1 1.1 2 1 1.6 9

GPCR 138 1 1.1 7 1 3.2 34

IC 179 1 1.3 20 1 8.3 123

E 713 1 2.0 154 1 4.1 293

Table 4. The performance among different drug representations

Representations AUC AUPR

NR GPCR IC E NR GPCR IC E

W2Va 0.9171 0.9570 0.8921 0.8577 0.5798 0.5748 0.5055 0.1879

MD_PYBb 0.9380 0.9454 0.8914 0.8426 0.6487 0.4229 0.4899 0.1874

MD_CDKb 0.9541 0.9555 0.9105 0.8471 0.7495 0.5893 0.6292 0.2854

MD_RDKb 0.9562 0.9733 0.9236 0.8810 0.7634 0.6992 0.6755 0.3581

MD_PADb 0.9611 0.9604 0.9336 0.8552 0.7839 0.6163 0.7119 0.3939

MD_MERb 0.9614 0.9717 0.9338 0.8579 0.7888 0.7015 0.7189 0.3992

MF_FP2c 0.9581 0.9769 0.9275 0.8742 0.7814 0.7470 0.7032 0.3917

MF_MACc 0.9560 0.9736 0.9226 0.8749 0.7662 0.7213 0.6966 0.3781

MF_PCPc 0.9626 0.9745 0.9302 0.8588 0.7971 0.7552 0.7008 0.3854

MF_EC4c 0.9614 0.9755 0.9261 0.8683 0.8082 0.7667 0.7056 0.3939

MF_EC8c 0.9612 0.9755 0.9261 0.8683 0.8081 0.7663 0.7056 0.3939

EC4, W2Vd 0.9556 0.9744 0.9231 0.8672 0.7700 0.7303 0.6784 0.3785

W2V, MERd 0.9614 0.9718 0.9329 0.8682 0.7841 0.7010 0.7183 0.3819

EC4, MERd 0.9620 0.9736 0.9328 0.8688 0.7952 0.7157 0.7193 0.4099

EC4, W2V, MERd 0.9620 0.9742 0.9325 0.8701 0.7910 0.7183 0.7190 0.4089

aThe word2vec-inspired feature, which extracts semantic information from drug SMILES.
bThey are molecular descriptors (MDs) that generated by different tools.
cThey are molecular fingerprints (MFs).
dThey are feature combinations of the above three types of features. The EC4 is short for MF_EC4, MER is MD_MER, both of them are the best representations in MDs
and MFs.

we also compare target representationmethods for four updated

data sets and select the most suitable features for each data set

according to AUPR.

According to Table 5, it is obvious that the performance of

CTD and PRO is close, probably because both of them are gen-

erated by the PROFEAT web server, and CTD is a subset of

PRO. Further, for the combination of CTD or PRO with PDF, the

performance is also close. Besides, on the NR and GPCR data

sets, PDF appears to be a significant trough, because the protein

domain information is too little to fully describe the target. Also,

its lower dimension than CTD and PROmakes it have little effect

on the performance of feature combinations. On the contrary,

on the IC and E data sets, the performance of PDF is signifi-

cantly improved compared to CTD and PRO as its rich protein

domain information. Therefore, PDF dominates the performance

of feature combinations.

Finally, we chose the most suitable target representation

method for each data set according to the highest AUPR. For

NR, the most suitable target representation method is CTD. For

IC, it is PDF. For GPCR and E, it is the combination of CTD and

PDF.

The DTI-MLCD and classical machine learning
methods in updated data sets

This study proposed the DTI-MLCD method which applies five

data-driven community detection algorithms as label partition-

ing methods and assembles them into a multi-label learning

method. We explain the superiority of DTI-MLCD from two per-

spectives.

The first is the comparison of label partitioning algorithms.

For the data-driven label partitioningmethod, k-means is always

used due to its simplicity and popularity, and has been applied

with k ∈
{

2, 4, 8, 16, 32
}

to solve the DTI prediction problem

[75]. So we use k-means as the baseline label partition method

to compare with community detection algorithms. To be more

convincing, we expanded the value range of k from 2 to the

number of the label set. The silhouette coefficient [121] is a

measure of label division quality to calculate the goodness of

a clustering technique. The k value that maximizes the silhou-

ette coefficient will be used as the optimal number of clusters.

Table 6 (task TD) and Table 7 (task TT) indicate that the com-

munity detection algorithm is superior to k-means. Further, to
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Table 5. The performance among different target representations

Representations AUC AUPR

NR GPCR IC E NR GPCR IC E

CTDa 0.5752 0.7896 0.9320 0.8650 0.2704 0.3554 0.6790 0.3322

PROa 0.5789 0.7928 0.9321 0.8647 0.2656 0.3490 0.6876 0.3472

PDFb 0.5713 0.7613 0.9451 0.8568 0.1227 0.2063 0.7342 0.5424

CTD, PDFc 0.5750 0.7950 0.9405 0.8894 0.2403 0.3591 0.7356 0.5330

PRO, PDFc 0.5801 0.7950 0.9366 0.8868 0.2594 0.3563 0.7312 0.5174

aThey are descriptors obtained by PROFEAT.
bThe protein domain fingerprint.
cThey are feature combinations of the above two types of features.

Table 6. The results of the proposed methods and other classical machine learning methods for task TD (i.e., predicting new drugs)

Algorithm AUC AUPR

NR GPCR IC E NR GPCR IC E

FGAa 0.9613 0.9738 0.9349 0.8840 0.8135 0.7721 0.7184 0.4148

IMAa 0.9611 0.9766 0.9358 0.8768 0.8129 0.7765 0.7194 0.4165

LPAa 0.9611 0.9763 0.9345 0.8833 0.8135 0.7755 0.7179 0.4173

MLAa 0.9614 0.9745 0.9347 0.8833 0.8134 0.7734 0.7186 0.4165

WTAa 0.9611 0.9744 0.9355 0.8839 0.8129 0.7722 0.7187 0.4184

k-meansb 0.9629 0.9754 0.9352 0.8771 0.8128 0.7731 0.7178 0.4040

MLkNNc 0.9363 0.9575 0.8356 0.7962 0.6699 0.6340 0.1644 0.0454

BRc 0.9622 0.9814 0.9372 0.8771 0.8115 0.7307 0.6914 0.4040

CCc 0.9610 0.9767 0.9346 0.8664 0.8109 0.7219 0.6845 0.3822

LPc 0.9614 0.9755 0.9328 0.8688 0.8082 0.7667 0.7193 0.4099

RAkELc 0.9532 0.9735 0.9306 0.8736 0.8004 0.7724 0.7048 0.4034

RFd 0.9626 0.9754 0.9423 0.8983 0.8102 0.7730 0.7113 0.3238

ERTd 0.9616 0.9688 0.9314 0.8786 0.8102 0.7571 0.7049 0.3546

GNBd 0.6818 0.7037 0.5015 0.5273 0.3732 0.3730 0.4197 0.0054

aFGA, IMA, LPA, MLA, and WTA are community detection algorithms in the proposed DTI-MLCD method.
bk-means is the baseline clustering method that is compared with community detection algorithms.
cMLkNN, BR, CC, LP, and RAkEL are classical multi-label methods that are compared with DTI-MLCD.
dRF, ERT, and GNB are classical binary classification methods that are compared with DTI-MLCD.

illustrate the biological explanation of the proposed methods,

Figure 2 visualizes the results of six data-driven label partition-

ing methods that were applied to the NR data set. Although the

community structures obtained by different community detec-

tion algorithms have their own characteristics, they also have

certain similarities. FGA, LPA, and MLA divide 33 labels into 6

communities. Especially, the community structure of FGA and

MLA is the same, noted that both FGA and MLA belong to the

modularity-based algorithm. In addition, for the random walk-

based algorithm, the number of communities obtained by WTA

and IMA is relatively large. Moreover, k-means obtains only 4

communities, and the community structure is very different

from community detection algorithms.

On the other hand, we discuss the pathway and classi-

fication of three communities through the KEGG database,

and the details shown in Table 8. The (1, 28) and (26, 27) are

communities obtained by all six algorithms, and (20, 29, 32) are

only available in IMA. For each of the first two communities,

the two vertices belong to the same classification and pathway.

The three vertices in the third community have similarities and

differences. Therefore, we can think that the label clustering

obtained by the community detection algorithm has a certain

significance for biological interpretation. This also confirms

the classical assumption that similar targets tend to combine

similar drugs.

The other aspect we discuss is to compare the DTI-MLCD

algorithm with other classic machine learning algorithms, (a)

multi-label algorithms: MLkNN, BR, CC, LP, and RAkEL, and (b)

binary classification algorithms: RF, extremely randomized trees

(ERT), and Gaussian naïve Bayes (GNB). The results of the above

methods on the four updated data sets are listed in Table 6

(task TD) and Table 7 (task TT), respectively. In the results, the

proposed DTI-MLCD is superior to othermachine learningmeth-

ods in most cases. The reason why LP performs better than

DTI-MLCD on the NR data set under the TT task is that NR

has few label sets, and both label sets and individual labels

have very few samples (see Table 3 for details), but it has 541

labels. Therefore, only a single LP algorithm can achieve bet-

ter results, but after adding the community detection algo-

rithm, it will cause overfitting. On the other hand, although the

binary classificationmethods RF and ERThave achieved compet-

itive results with DTI-MLCD. However, our experimental results

demonstrated that its long calculation time and large required

memory will make it difficult to achieve optimal performance

through fine-tuning (Supplementary Table S1 and S2). Further,

the Friedman-Nemenyi test with a significance level of 0.05

confirmed the significant differences among methods. All five

proposed methods are at the forefront of the ranking, and the

overall performance of FGA is slightly lower than the other four

proposed methods.
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Table 7. The results of the proposed methods and other classical machine learning methods for task TT (i.e., predicting new targets)

Algorithm AUC AUPR

NR GPCR IC E NR GPCR IC E

FGAa 0.5715 0.8027 0.9489 0.8593 0.2311 0.3702 0.7468 0.5669

IMAa 0.5748 0.8002 0.9476 0.8598 0.2409 0.3683 0.7663 0.5669

LPAa 0.5759 0.8048 0.9459 0.8591 0.2494 0.3785 0.7518 0.5670

MLAa 0.5657 0.8062 0.9478 0.8640 0.2177 0.3759 0.7609 0.5677

WTAa 0.5745 0.8002 0.9463 0.8642 0.2401 0.3746 0.7574 0.5673

k-meansb 0.5611 0.7893 0.9382 0.8639 0.2383 0.3693 0.7174 0.5668

MLkNNc 0.5470 0.7351 0.9094 0.8053 0.1811 0.2751 0.6414 0.3112

BRc 0.5617 0.7892 0.9382 0.8639 0.2352 0.3694 0.7174 0.5673

CCc 0.5647 0.7580 0.9183 0.8563 0.2360 0.2424 0.6475 0.5152

LPc 0.5752 0.7927 0.9403 0.8568 0.2704 0.3670 0.7429 0.5651

RAkELc 0.5642 0.7902 0.9395 0.8640 0.2352 0.3714 0.7242 0.5670

RFd 0.6764 0.7610 0.9511 0.8775 0.2445 0.3104 0.7419 0.5652

ERTd 0.5804 0.7179 0.9459 0.8404 0.2632 0.3410 0.7650 0.5462

GNBd 0.4451 0.6566 0.5006 0.5347 0.2149 0.3770 0.3107 0.0035

aFGA, IMA, LPA, MLA, and WTA are community detection algorithms in the proposed DTI-MLCD method.
bk-means is the baseline clustering method that is compared with community detection algorithms.
cMLkNN, BR, CC, LP, and RAkEL are classical multi-label methods that are compared with DTI-MLCD.
dRF, ERT, and GNB are classical binary classification methods that are compared with DTI-MLCD.

Figure 2. The label partition results that community detection algorithms and baseline k-means method applied in the label space of the nuclear receptor data set.

Comparison to other DTI prediction methods on
Yamanishi_08 data sets

We compare the proposedmethod against three state-of-the-art

methods for DTI prediction. NetLapRLS [66], BLM-NII, and DDR

[27]. NetLapRLS introduces the drug-target network information

into the manifold Laplacian regularized least squares method

which uses the concept of the bipartite local model. It avoids

the dilemma caused by negative sample construction through

a semi-supervised setting. BLM-NII exploits a bipartite local

model with neighbor-based interaction profile inferring on

a bipartite network of DTIs, which adds a preprocessing

component to infer training data from neighbors’ interaction

profiles. DDR executes the graph-mining technique first to

acquire the comprehensive feature vectors and then applies the

random forest model by using different graph-based features
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Table 8. The details for three communities A: (1, 28), B: (26, 27), and C: (20, 29, 32). The numbers represent the nodes in Figure 2

Community

node

Gene Details

A1 LXRA Classification:

(1) Liver X receptor like receptor

(2) Cys4 thyroid hormone-like transcription factor

Pathway: Insulin resistance

A28 LXRB

B26 THRA Classification:

(1) Cys4 thyroid hormone-like transcription factor

(2) Thyroid hormone like receptor

Pathway:

(1) Neuroactive ligand-receptor interaction

(2) Thyroid hormone signaling pathway

B27 THRB

C20 RORA Classification:

(1) Cys4 thyroid hormone-like transcription factor

(2) Thyroid hormone like RAR-related orphan receptor

C29 VDR Classification:

(1) Cys4 thyroid hormone-like transcription factor

(2) Thyroid hormone like vitamin D3 like receptor

C32 CAR Classification:

(1) Cys4 thyroid hormone-like transcription factor

(2) Thyroid hormone like vitamin D3 like receptor

(3) constitutive androstane receptor

Table 9. The results of the proposed methods and three existed DTI prediction methods for task TD (i.e., predicting new drugs)

Algorithm AUC AUPR

NR GPCR IC E NR GPCR IC E

FGAa 0.7829 0.8636 0.8220 0.8506 0.4990 0.4504 0.3887 0.4105

IMAa 0.7830 0.8698 0.8223 0.8537 0.4992 0.4593 0.3857 0.4045

LPAa 0.7785 0.8655 0.8197 0.8563 0.5079 0.4537 0.3924 0.4067

MLAa 0.7829 0.8632 0.8237 0.8522 0.4990 0.4488 0.3885 0.4088

WTAa 0.7828 0.8619 0.8219 0.8539 0.4989 0.4501 0.3860 0.4045

BLM-NIIb 0.8042 0.8496 0.8119 0.8204 0.4503 0.3415 0.3260 0.2690

NetLapRLSb 0.7919 0.8281 0.7721 0.7933 0.4313 0.2456 0.2078 0.1287

DDRb 0.6019 0.5678 0.4994 0.4768 0.2878 0.1907 0.1471 0.1336

aFGA, IMA, LPA, MLA, and WTA are community detection algorithms in the proposed DTI-MLCD method.
bBLM-NII, NetLapRLS, and DDR are existed DTI prediction methods that are compared with DTI-MLCD.

extracted from the drug-target heterogeneous graph. Since

these methods are proposed on the Yamanishi_08 data set,

we perform the proposed DTI-MLCD method on this data set

and compare it with other methods. All methods are carried

out under the same experimental environment, such as SCV,

random seeds, etc. And the results are obtained after fine-

tuning. As reflected in Table 9, all the proposed methods in

task TD outperform the three methods in terms of AUPR.

For task TT (Table 10), the proposed methods outperform

the three methods in IC and E data sets while they are

slightly inferior to BLM-NII in NR and GPCR. In order to

comprehensively test the superiority of the method proposed

in this study, we conduct the Friedman-Nemenyi test for

all 8 methods. This hypothesis test is performed on both

AUPR and AUC for completeness although AUPR is more

informative than AUC in this study. These results indicate that

all the proposed methods are performed better than the three

other methods. Moreover, they are significantly better than

DDR and NetLapRLS with significance levels of 0.05 and 0.1,

respectively.

Independent test

We conduct independent tests of the proposed DTI-MLCD

method according to the data set before and after the update.

The model for the independent test is trained on the Yaman-

ishi_08 data set. The results are shown in Table 11 (task TD) and

Table 12 (task TT).
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Table 10. The results of the proposed methods and three existed DTI prediction methods for task TT (i.e., predicting new targets)

Algorithm AUC AUPR

NR GPCR IC E NR GPCR IC E

FGAa 0.4961 0.7458 0.9104 0.9285 0.3472 0.2943 0.7047 0.7861

IMAa 0.4929 0.7429 0.9114 0.9214 0.3457 0.2919 0.7027 0.7875

LPAa 0.4925 0.7509 0.9105 0.9214 0.3398 0.2969 0.7082 0.7877

MLAa 0.4998 0.7481 0.9098 0.9286 0.3487 0.2942 0.7093 0.7868

WTAa 0.4923 0.7495 0.9103 0.9217 0.3460 0.3010 0.7046 0.7873

BLM-NIIb 0.5042 0.7777 0.9093 0.9193 0.3726 0.3078 0.7028 0.7570

NetLapRLSb 0.4986 0.7425 0.9082 0.9161 0.2793 0.2515 0.6543 0.7064

DDRb 0.4932 0.6290 0.5784 0.6965 0.2365 0.2288 0.3108 0.5026

aFGA, IMA, LPA, MLA, and WTA are community detection algorithms in the proposed DTI-MLCD method.
bBLM-NII, NetLapRLS, and DDR are existed DTI prediction methods that are compared with DTI-MLCD.

Table 11. The results of independent tests on Yamanishi_08 data set for task TD. The column Algorithm contains five community detection
algorithms of the proposed DTI-MLCD method

Algorithm AUC AUPR

NR GPCR IC E NR GPCR IC E

FGA 0.8174 0.8941 0.8238 0.8457 0.5331 0.3953 0.2795 0.1369

IMA 0.8172 0.9020 0.8262 0.8426 0.5331 0.4000 0.3012 0.1353

LPA 0.8157 0.9000 0.8257 0.8430 0.5334 0.3982 0.3013 0.1375

MLA 0.8174 0.8944 0.8246 0.8455 0.5331 0.3928 0.2776 0.1378

WTA 0.8174 0.8920 0.8230 0.8427 0.5331 0.3935 0.2890 0.1363

Table 12. The results of independent tests on Yamanishi_08 data set for task TT. The column Algorithm contains five community detection
algorithms of the proposed DTI-MLCD method

Algorithm AUC AUPR

NR GPCR IC E NR GPCR IC E

FGA 0.8224 0.6130 0.7353 0.7348 0.3787 0.0076 0.2090 0.1077

IMA 0.8224 0.6135 0.7323 0.6834 0.3787 0.0075 0.2144 0.1057

LPA 0.8223 0.6107 0.7383 0.6809 0.3840 0.0076 0.2127 0.1048

MLA 0.8228 0.6255 0.7395 0.7339 0.3787 0.0080 0.2119 0.1071

WTA 0.8224 0.6080 0.7363 0.6814 0.3787 0.0074 0.2142 0.1052

Conclusion

This study updated the gold standard data set Yamanishi_08,

and proposed DTI-MLCD for DTI prediction, which is a new

multi-label learning framework empowered by community

detection. This framework explore five community detection

algorithms to conduct label partitioning. This study con-

ducted experiments on both Yamanishi_08 data set and our

updated data set. On Yamanishi_08 data set, the DTI-MLCD

shows higher performance than several existed methods.

In our updated data set, DTI-MLCD is superior to classic

machine learning algorithms. In addition, this study also

constructed the independent tests on new and old data

sets. On the other hand, the results of the five community

detection algorithms used in this framework are superior

to the baseline k-means algorithm in performance and

interpretability.

In the future, we will solve the problem of label imbalance

and construct positive and negative samples in the form of

semi-supervised learning to improve the performance of the

framework in predicting DTIs.

Key Points

• For drug discovery and drug repositioning, predicting

DTIs is highly important, especially using computa-

tional methods such as machine learning methods.

The dominant issues in the prediction of DTIs are the

absence of positive samples and the unsatisfactory

performance with large computational cost. We have

tackled these issues.
• The quality of the benchmark data set is crucial to

the performance of a DTI prediction method. Since

the gold standard data sets often used in the previous

studies was proposed in 2008, we updated the gold

standard data set and added about 15,000 positive DTI

samples in the present work.
• The proposed DTI-MLCD method is a multi-label clas-

sification framework. It transforms the DTI prediction

problem from traditional binary classification into

multi-label classification, and introduces the commu-

nity detectionmethod with the label correlations con-

sidered. For different data sets, the most suitable drug
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(or target) representation method is different. There-

fore, different feature representations are adopted for

different tasks under different data sets in DTI-MLCD.
• DTI-MLCD achieves competitive performancewith the

binary classification method, and avoids its disadvan-

tages, such as excessive computational load andmiss-

ing information about the correlations among labels.

Moreover, DTI-MLCD can predict a series of DTIs for a

drug or target at once.
• DTI-MLCD is superior to other classic machine learn-

ing algorithms and some previously published DTI

prediction methods, which indicates its usefulness

and capability.

Supplementary data

Supplementary data mentioned in the text are available to
subscribers in BRIBIO online.
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