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Abstract

Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of
various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop
computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a
node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts
MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to
improve the training efficiency and accuracy. This method models both the potential connections of feature space and the
structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA
functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously
on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample
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distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new
miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has
achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and
the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the
feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases
and three miRNAs are conducted and achieved satisfactory performance.

Key words: miRNA-disease associations; the feature and topology graph; graph convolutional network; graph sampling

Introduction
MiRNA is a type of endogenous regulatory noncoding RNA dis-
covered in 1993, and its length is about 22 nucleotides [1, 2]. It
plays a vital role in a variety of biological processes by targeting
specific mRNA and regulating gene expression [3–7], including
immune reaction [8], cell cycle regulation [9], tumor invasion [10],
etc. In addition, it is proven that miRNAs regulate more than
one-third of genes [11], so the dysregulation of miRNAs can lead
to cell behavior disorders [12]. Furthermore, many studies have
proved that miRNAs are highly correlated with the development
of complex human diseases [13–16], especially cancers [17], such
as breast cancer [18, 19], lung cancer [20, 21], lymphoma [22] and
so on. Therefore, miRNAs may be used as potential biomarkers in
the diagnosis of diseases [19, 23, 24]. Thus, identifying the asso-
ciations between miRNAs and diseases can not only improve
the understanding of disease mechanisms but also assist in
disease prevention, diagnosis and treatment [25, 26]. Although
experimental methods to identify the miRNA-disease associa-
tion (MDA) have high accuracy, they are very time-consuming
and costly. Therefore, the development of computational meth-
ods to identify MDAs is necessary and becomes an auxiliary step
for experimental methods [27].

Network science is established as a backbone for exploring
complex biological systems (i.e. molecular interaction networks).
They are graphs composed of biomolecules as nodes and inter-
connections between biomolecules as edges, such as MDAs stud-
ied in this work. A large number of studies have shown that
biomolecules do not perform their biological functions alone
but express their functions through the interaction with other
biomolecules to form a hierarchical community structure [28].
Further, the disease should be described as a ‘network disease’,
because it is rarely caused by a single gene abnormality, but
by disturbance or malfunction of the complex biological net-
work of tissues and organ systems [29]. Therefore, the infer-
ence of association between biomolecules should consider the
network topology. Graph neural networks (GNNs) [30] repre-
sent a significant stride to operate directly on network/graph-
structured data, and a promising method to address the above
problem. GNN is essentially a neighborhood node aggregation
scheme, where each node aggregates feature information of
its directed neighbors to compute its new feature vector. After
multiple iterations of information aggregation, the computed
node embedding will capture the structural information among
the neighbors of the node. GNNs are being widely used in var-
ious real-world tasks and have been achieved satisfactory per-
formance in bioinformatics applications, such as drug–target
interactions or affinity predictions [31–36], drug–drug interac-
tion predictions [37–40], disease–gene association identification
[41–44], etc.

Graph convolutional network (GCN) [45] is an important
branch of GNN and has made great progress in recent years.

However, traditional GCN methods usually require full graph
training. In MDA or other bioinformatics tasks, the number
of related entities (such as drugs, proteins, miRNAs, etc.) is
very large. Thus, blindly performing full graph training will
cause huge computational complexity due to the ‘neighbor
explosion’ phenomenon and may cause insufficient memory
due to too many computing resources being required. Then,
most of the work [46–50] is exploring how to reduce training costs
by sampling the nodes of each layer of GCNs. However, these
methods still face challenges in accuracy, scalability and training
complexity [51, 52]. Thus, the subgraph-based methods [51, 53,
54] are designed to suit large graphs and deep networks. Inspired
by their ideas, this study samples subgraphs of the original graph
and runs the full GCN model on the subgraph for each minibatch.
To ensure that these subgraphs retain most of the original edge
while still presenting a meaningful topology, we performed an
edge-based sampling strategy and added normalization and
variance reduction technology.

On the other hand, most existing MDA prediction methods
are trained and tested on balanced data, such as [55–58]. They
regard the known MDAs as the positive samples, the unknown
MDAs as the negative samples and then sample the same num-
ber of negative samples as that of the positive samples so that
the ratio of positive to negative samples is 1:1. It is worth noting
that the distribution of these balanced data does not conform
to the natural distribution of MDAs. Although many methods
have achieved good performance on these balanced data, it does
not mean their high performance on real MDA prediction tasks,
because the test set is incomplete. Therefore, it is necessary
to consider natural unbalanced data, although the imbalance
problem is still a major challenge for machine learning methods
[59]. On the other hand, the existing methods only consider the
prediction of new miRNA-disease pairs (MDPs) when training
and testing, that is, the task pairs (i.e. Tp) in this study. Although
most of the current methods have carried out case studies on
certain diseases, it is still not enough to account for the overall
predictive performance of new miRNAs and diseases that did not
appear in the training set. Therefore, this study considered the
above two types of viewpoints at the same time and proposed
six experimental tasks on the MDA prediction problem for the
first time, namely, to predict new MDPs (Tp), predict new miRNAs
(Tm) and predict new diseases (Td) on balanced and unbalanced
data, respectively. It is worth noting that the positive sample
corresponding to the new object in the above tasks is only in the
test set, not in the training set.

This research proposes a novel MDA-GCNFTG method
(Figure 1) for MDA prediction and implements it on six different
prediction tasks. The method is mainly composed of two parts.
First, we define the feature and topology graph that fully explore
node (i.e. miRNAs and diseases) feature, network topology (i.e.
MDAs or miRNA-disease links) and their combination through
the k-nearest neighbors (k-NN) algorithm [60, 61] to introduce
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Figure 1. The workflow of the proposed MDA-GCNFTG method, where the MDP represents the miRNA-disease pair, GCN represents GCN.

the most helpful and deepest relevant information for the MDA
prediction task. For this graph, the node is the MDP, the node
label represents whether the MDP is MDA or not and the edge
is constructed between the node and its k nearest neighbors
based on the node information. It is worth noting that regarding
the use of MDP as the node, we considered two reasons: (i)
Based on the assumption that similar miRNAs are more likely
to be related to similar diseases and vice versa [62], further,

similar MDPs tend to have similar associations (i.e. labels).
Implementing the GCN algorithm on this graph will make the
similar nodes (i.e. similar miRNA-disease pairs) to be clustered.
(ii) Compared with heterogeneous graphs, homogeneous graphs
are easier to learn. Then, a novel GCN algorithm based on
graph sampling is implemented on the feature and topology
graph. The experimental results show that the proposed MDA-
GCNFTG method has achieved satisfactory results in all six tasks
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and is superior to several classic machine learning algorithms
and state-of-the-art methods on the MDA prediction problem.
Moreover, this research also demonstrates the effectiveness
of k-NN and the novel GCN algorithm in this method. More
importantly, we conducted two types of case studies for
miRNAs and diseases, respectively. The results demonstrate
the satisfactory performance and prove the effectiveness of the
proposed MDA-GCNFTG method.

Related work
In recent years, a large number of computational methods [63]
have been developed for MDA prediction problems and can
be divided into four categories [27], including score function–
based, multiple biological information–based, complex network
algorithm–based, and machine learning–based methods. The
score function–based methods [62, 64–66] define the score
function based on the probability distribution or statistical
analysis of training data to measure the degree of the potential
MDA. The multiple biological information–based methods
[67–99] consider the bioinformatics knowledge related to
miRNAs and diseases, which may also include entities of
circRNA, mRNA, lncRNA, drug, protein, microbe, etc. The
heterogeneous graph constructed through the above entities and
the relationship among them can provide valuable information
for constructing the relationship between miRNAs and diseases.
The complex network algorithm–based methods [100–191]
predict potential MDAs mainly based on various disease
and miRNA similarity networks from different perspectives.
The machine learning–based methods [55, 192–228] are the
important branch in the field of MDA prediction. They use
machine learning algorithms to extract effective feature
representations and solve the specific optimization problem
to obtain reliable MDA prediction. It is worth noting that the
above four types of methods are not without intersection. For
example, the GraRep method [229] adopts the ideas of multiple
biological information–based, complex network algorithm–
based, and machine learning–based methods at the same time. It
establishes a heterogeneous graph network containing miRNA,
disease, drug, protein, lncRNA and the associations among
them. In the construction of embedding representations, the
similarity information of disease was also considered. Finally,
the random forest (RF) algorithm that belongs to the machine
learning algorithm was used to predict the potential MDA.

Some studies have tried to apply GCNs to the MDA prediction
problem, and they can be categorized into the following four cat-
egories. (i) Pairwise GCNs methods [57, 230, 231], which use two
GCNs to extract miRNAs and diseases embedding, and then pre-
dict MDAs. This type of method does not consider the connection
among MDPs. (ii) The link prediction method of bipartite graph
[56], which uses miRNAs and diseases as nodes, MDAs as edges
and GCNs to predict potential MDAs. It regards negative samples
as a kind of edges to participate in node update, which causes
the oversmoothing problem caused by too many false neighbors.
(iii) The GCN method based on the fully connected graph [58].
Since the graph is too dense, after the nodes are updated, the
embedding of each node tends to be unified, which causes the
oversmoothing problem. (iv) Pan et al. proposed studies [232, 233]
that use the multilabel GCN to infer disease-associated miRNAs
in a semisupervised manner. However, these two methods only
realize a part of the MDA prediction, without considering the
task for prediction of its associated miRNAs for a given disease.

Table 1. Summary of the corresponding miRNA-disease associations’
information in the test data of three experimental settings

Experimental
settings

Diseases miRNAs Associations

Tp Known Known New
Td New Known New
Tm Known New New

Table 2. Summary of the samples on the balanced and unbal-
anced data

Data Known associations Unknown associations

Balanced 5430 5430
Unbalanced 5430 184 155

Materials and methods
Data set

In this study, the human miRNA disease database (HMDD) v2.0
[234] is adopted as the benchmark data set. There are 5430
experimentally verified MDAs consisting of 495 miRNAs and
383 diseases. In the MDA prediction problem, known MDAs are
considered as positive samples, and the negative data contain
all unknown or nonexisting MDAs.

The HMDD v2.0 used in this study was released in 2014. Some
recent studies [55, 71, 73, 172, 176, 209] have used the updated
data set of HMDD v3.0 [235] released in 2019. Therefore, we also
used the larger and new version HMDD v3.0 to train and test
our method. The statistical information of HMDD v3.0 is shown
in Supplementary Table S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/.

Experiment settings and tasks

This study evaluates the MDA prediction problem through three
experiment settings: (i) task pairs (Tp), which predicts new MDPs;
(ii) task diseases (Td), which predicts new diseases and (iii) task
miRNAs (Tm), which predicts new miRNAs. The label of the new
object in the corresponding task is missed in the training set,
but it exists in the test set to predict and evaluate the model
performance (as shown in Table 1).

On the other hand, we evaluate the above three experimental
settings on balanced and unbalanced data. For the unbalanced
task, we consider the entire space of MDAs in these three tasks
to simulate more practically, that is, use all negative data as
negative samples to participate in training and test. Therefore,
the number of positive samples is much lower than the number
of negative samples, resulting in an imbalance of data. Moreover,
we also use the balanced data to follow the previous work, that
is, the same amount of data as the positive sample is sampled
in the negative data as the negative sample before training and
test. The details are as shown in Table 2.

Finally, this study performed six tasks to cover most cases
predicted by MDAs.

Node feature construction

This study adopted an integrated feature based on the diseases
semantic similarity, miRNAs functional similarity and Gaussian
interaction profile (GIP) kernel similarities. The feature genera-
tion process is shown in Figure 2.
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Figure 2. The feature generation process of the proposed MDA-GCNFTG method.

The miRNA functional similarity matrix

The miRNA functional similarity matrix (MFSM) is built based on
the assumption that miRNAs with similar functions are more
likely to be associated with diseases with similar phenotypes,
and vice versa [236]. The similarity information can be obtained
from https://www.cuilab.cn/files/images/cuilab/misim.zip.

The disease semantic similarity matrix

The disease semantic similarity can be calculated based on
the medical subject headings descriptors [195], which can be
obtained from https://www.ncbi.nlm.nih.gov/. Many studies [56,
62, 236] used the directed acyclic graph (DAG) to generate disease
semantic similarity matrix (DSSM), where the DAG describes the
relationship of different diseases.

There are two different DSSMs defined from two consider-
ations. The DSSM1 is generated based on the assumption that
if two diseases share a larger part of their DAGs, they can be
considered more similar. The DSSM2 further considered that
if the disease appears in more (or less) DAGs, it may be more
common (or specific). Therefore, in the same layer of DAG, the
semantic contribution value of diseases should be different.
These two DSSMs are obtained from GAMEDA [56].

In order to obtain a more reasonable DSSM, we perform
element-wise averaging on the above two DSSMs to synthesize
the final DSSM.

The GIP kernel similarity

Based on the assumption that similar miRNAs are more likely
to be related to similar diseases [62], the GIP kernel similar-
ity matrix for miRNAs (MGSM) and diseases (DGSM) can be
calculated.

Take building DGSM as an example. First, build the miRNA
interaction profile for diseases; the column i represents the
miRNA interaction profile ydi

of the disease di. It is a binary
vector, and each element represents the association between the
disease and the corresponding miRNA. If there is an association,
the element value is 1; otherwise, it is 0. Next, calculate the
GIP similarity between disease di and dj according to the two
corresponding columns of the miRNA interaction profile:

DGSM
(
di, dj

) = exp

(
−

(
nd∑nd

m=1

∥∥ydm

∥∥2

) ∥∥∥ydi
− ydj

∥∥∥2
)

(1)

where nd is the number of diseases. Moreover, due to normaliza-
tion, this kernel is independent of the size of the data set.

The MGSM is calculated in the similar way as DGSM.

Integrated similarity as node feature

Considering that there are many sparse values in the MFSM
and DSSM obtained above, we fuse the GIP kernel similarity
MGSM and DGSM to fill the zero-values, respectively. Then, the
integrated miRNA and disease similarity matrix (that are IM and
ID) are obtained. The integrated equations [62] are

IM
(
mi, mj

) =
{

MFSM
(
mi, mj

)
if MFSM

(
mi, mj

)
not equal to 0

MGSM
(
mi, mj

)
otherwise

(2)

ID
(
di, dj

) =
{

DSSM
(
di, dj

)
if DSSM

(
di, dj

)
not equal to 0

DGSM
(
di, dj

)
otherwise

.

(3)
Then, the IM and ID are spliced as the node (i.e. MDP) feature

of the feature and topology graph for the proposed MDA-GCNFTG
method.

Methods

There are two crucial steps in the MDA-GCNFTG method
(Figure 1): (i) construct the feature and topology graph through
integrated similarity and k-NN algorithm and (ii) predict the
MDA by a novel GCN algorithm via graph sampling.

Preliminaries

Define a graph G (V, E, X), where V is the node set, E is the
edge set and X is the node feature matrix. This graph describes
the relationship among nodes with attributes. Applying the GCN
algorithm to the graph data to predict the category of each node
is the node classification task. In order to classify nodes, GCNs
use the feature of the node itself, as well as the information of
neighboring nodes and edges for message passing, which can be
performed multiple times to aggregate information from a wider
range of neighbor nodes to update the node feature.

GCN is a neural network layer, and its propagation mode from
layer l to layer l + 1 is

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 H(l)W(l)

)
, Ã = A + I, D̃ii =

∑
j
Ãij, (4)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab165/6261915 by Shanghai Jiao Tong U

niversity Library user on 11 N
ovem

ber 2021

https://www.cuilab.cn/files/images/cuilab/misim.zip
https://www.ncbi.nlm.nih.gov/


6 Chu et al.

where A is the adjacency matrix, I is the identity matrix, H(l) is
the feature of the lth layer,W(l) is the weight of the lth layer and
σ is a nonlinear activation function. For the input layer, H is X.

For the node classification problem, suppose we construct
two-layer GCNs, and the activation function adopts ReLU and
softmax, respectively, then the overall forward propagation for-
mula is

Ŷ = softmax
(
ÂReLU

(
ÂXW(0)

)
W(1)

)
, Â = D̃− 1

2 ÃD̃− 1
2 . (5)

Finally, the cross-entropy loss function is calculated for all
labeled nodes.

Construct the feature and topology graph through the k-NN
algorithm

There is a study that revealed [237] that the ability of GCNs
to integrate network topology and node features to extract the
most relevant information for the task is not ideal, which may
seriously hinder the performance of classification tasks. Fur-
thermore, similarities between the feature and the information
inferred from the topological structure are complementary to
each other, and fusing them can get deeper related information
for classification tasks [237]. Moreover, the correlation between
graph data and tasks is often complicated and unknowable, so
adaptive ability is also important in practical applications.

Inspired by the above study, this study proposes an adaptive
graph-building method, which can adaptively propagate node
features and topological information to the feature space. In
order to fully capture the structural information in the feature
space, we generate feature and topology graph through the k-
NN algorithm based on the node feature and the topological
relationship between miRNAs and diseases. To realize this point,
the MDP is used as the node in the graph, the node feature is the
integrated similarity of the miRNA and the disease, and the label
of each node represents whether there is an association between
the miRNA and the disease. Compared with existing GCN-based
MDA prediction methods, this graph-building strategy not only
takes associations among MDPs into account but also realizes
the effective fusion of heterogeneity. Finally, a homogeneous
graph is generated to do the node classification task for the MDA
prediction problem.

The procedure to generate the feature and topology graph is
to fit a k-NN classifier, predict the label for each node and use
the k nearest correctly classified nodes as neighbors of the node.
Obviously, the result of the k-NN algorithm largely depends on
the choice of k. Thus, we tune the k parameter (i.e. at the value
of 1, 3, 5, 7, 10 or 15) to study the influence of the number of
neighbors on the MDA prediction. On the other hand, this k-NN
algorithm is performed on all data. To guarantee that the test
data are not leaked in the training phase, we set the label of
nodes that belong to test data to 0.

GCNs based on graph sampling and normalization

In this study, a novel GCN algorithm is applied to MDA predic-
tion tasks, and the overall training algorithm is illustrated in
Algorithm 1.

This algorithm is different from the traditional GCN algo-
rithm in minibatch construction; it is based on graph sampling.
The idea is to sample multiple subgraphs of the training graph
first and then construct the complete GCN on each subgraph.
In this way, when propagating in the GCN layer, accurate node
embedding can be obtained from the subgraph, and the sampled

nodes can support each other without collecting information
from outside the batch. Naturally, this algorithm solves the
dilemma of the neighbor explosion, which is usually encoun-
tered by traditional GCN algorithms. In order to ensure the
accuracy of training, a suitable graph sampler is needed. First
of all, we consider that nodes that have a great influence on
each other should be sampled in the same subgraph, so this
study uses a topology-based edge sampler. But this influence-
driven sampling idea will introduce bias. In order to eliminate
this bias, this algorithm introduces the sampling probability of
nodes and edges to carry out normalization when aggregating
node information and calculating the minibatch loss.

When defining an edge sampler, the main point is that edges
with a nonnegligible probability should be sampled. On the other
hand, it also considers that the variance of the aggregation of
the node in full GCNs should be reduced. According to this, the
optimal edge sampling probability is defined (see the 7th row of
Algorithm 1). The formula shows that if two connected nodes u
and v have very few neighbors (that is, they are very influential
to each other), then the edge probability p(u,v) = p(v,u) will be high.

Performance evaluation

In order to facilitate the comparison with other methods, we
followed previous studies [56, 62, 152, 156, 195, 197, 229] and
performed 5-fold cross-validation (CV) for each task. We also
carried out global and local leave-one-out CV (Details are shown
in Supplementary Section 2, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

For each fold of each task, the following metrics are
calculated:

Accuracy = TP + TN
TP + TN + FP + FN

(6)

Precision = TP
TP + FP

(7)

Recall = TP
TP + FN

(8)

F1 − score = 2 · Precision · Recall
Precision + Recall

, (9)

where TP is true positive, FP is false positive, FN is false negative
and TN is true negative in the predicting results.

Moreover, the area under the precision–recall curve (AUPR)
and the receiver operating characteristic curve (AUC) are also
calculated.

It is worth noting that due to the essential difference between
balanced and unbalanced data, the importance of different met-
rics is also different when performing performance evaluation.
In the balanced task, all the above six metrics are important.
It is worth noting that recall and precision are usually a pair
of contradictory performance metrics, so F1-score is often used
to characterize their comprehensive performance. Therefore, in
the following discussion, the average of the performance eval-
uation metrics is calculated from accuracy, F1-score, AUC and
AUPR for balanced tasks. However, in unbalanced tasks, accuracy
is less meaningful, and AUPR can provide better performance
estimates than AUC because it will punish false positives more
severely. Therefore, the average performance evaluation metric
in the following discussion is calculated from F1-score and AUPR.

Hypothesis test

When comparing multiple algorithms on a set of tasks, Demšar
[238] recommends the Friedman rank test [239, 240], which uses
rank to realize a nonparametric test to validate whether there
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Algorithm 1. GCN based on graph sampling and normalization

Input: Training graph G (V, E, X); Labels Y; The number of subgraphs N in pre-processing; Edge budget m
Output: GCN model with trained weights
1 function Edge sampler (G, m, P)
2 Es ← m edges randomly sampled from E according to P
3 Vs ← Set of nodes that are end-points of edges in Es

4 Gs (Vs, Es) ← Node induced subgraph of G from Vs

5 end function
6 function Pre-processing (G, N)
7 The probability of an edge (u, v) being sampled in a subgraph

P(eu,v) = ( 1
deg(u) + 1

deg(v) )/
∑

(u′ ,v′ )∈E( 1
deg(u′) + 1

deg(v′) )

8 Gs,n (Vs, Es), n = 1, . . . , N ← Repeatedly run the Edge sampler N times to obtain
N subgraphs of G

9 Cv ← for each node v ∈ V, count the number of times the node appears in the
N subgraphs

10 Cu,v ← for each edge (u, v) ∈ E, count the number of times the edge appears in
the N subgraphs

11 Normalization coefficients αu,v = Cu,v
Cv

= Cv,u
Cv

and λv = Cv
N

12 end function
13 Run Pre-processing to obtain N Gs, which can be reused in training, and

compute the edge probability P and normalization coefficients α, λ
14 for each minibatch do
15 Gs (Vs, Es) ← According to Edge sampler, sampled subgraph of G
16 Construct GCN on Gs

17 {ŷv | v∈Vs} ← Forward propagation of {xv | v∈Vs}, normalized by α

18 Update weights through backward propagation from λ-normalized loss
Lossbatch = ∑

v∈Gs

Lossv(ŷv ,yv)
λv

19 end for

are significant differences between multiple overall distribu-
tions. In this study, the null hypothesis is that there are no
differences among different methods. The statistical result of
the hypothesis test (that is, the P-value of the Friedman test)
is used to determine whether to reject the null hypothesis or
not based on the significance level α. If the null hypothesis is
rejected, that is, the difference between at least two methods
is statistically significant, we will subsequently compare every
two methods in pairs. In the pairwise comparison analysis by
Friedman test, we used the Bonferroni-adjusted P-value to take
into account the problem of type I error expansion in multiple
comparisons, so the accuracy is better than using the original
P-value. Finally, this method can indicate whether there is a
significant difference between different methods.

Results and discussion
Effect of the k-NN algorithm in the proposed
MDA-GCNFTG method

In order to verify the effectiveness of the k-NN algorithm in
the MDA-GCNFTG method, we first compared the edge-building
methods of 1-NN and self-loop, because 1-NN is similar to self-
loop that both of them create only one edge for each node in
the graph. The self-loop establishes an edge from a node to the
node itself, and each node in the graph has no neighbor nodes, so
effective node updates cannot be performed. The self-loop strat-
egy, as the baseline of the edge construction method in MDA-
GCNFTG, represents the lowest performance of the proposed
MDA-GCNFTG method. 1-NN establishes an edge between each
node and one of its neighbors. Although it can perform effective
node updates, the degree of nodes in the graph is too low (only
1), resulting in low graph utilization. Thus, the performance of
1-NN is also low in MDA-GCNFTG. The results of the comparison

are presented in Figure 3. It can be seen that 1-NN is better than
the self-loop method in six tasks, especially in the balanced task.
This proves that introducing links among nodes by the k-NN
algorithm can improve the performance of MDA tasks.

Then, we clarify the robustness of the model by comparing
different numbers of closest neighbors (i.e. k) in the k-NN algo-
rithm. For this purpose, the value of k includes 1, 3, 5, 7, 10 and
15. The results show (Figure 3) that for each task, the prediction
performance of different k is approximately equal to each other.
It indicates that the proposed MDA-GCNFTG is not very sensitive
to k and its robustness to the edge-building step is proven, which
will avoid a lot of work in parameter tuning. Moreover, MDA-
GCNFTG also has versatility for different tasks, so it can be
migrated to other MDA applications. The above point of view
has also been confirmed by experiments conducted on HMDD
v3.0 (see Supplementary Tables S2–S4, see Supplementary Data
available online at http://bib.oxfordjournals.org/).

In addition, we also proved the above viewpoint from a sta-
tistical perspective. The data for the Friedman test of each algo-
rithm are all the performance evaluation metrics on different
tasks. According to the average rank of each method calculated
by the Friedman test, the self-loop method ranks last (that is,
the lowest average rank), followed by 1-NN, indicating that these
two methods are indeed inferior to other k-NN methods in MDA-
GCNFTG. Through the pairwise comparison of the Friedman
test, self-loop has significant differences with all the six k-NN
methods. Its Bonferroni-adjusted P-value with 1-NN is 0.018,
and its Bonferroni-adjusted P-value with the other five k-NN
methods is less than 0.001. This result proves that the similar
edge-building strategies of self-loop and 1-NN both lead to sim-
ilar lower performance. In addition, the Bonferroni-adjusted P-
values between 1-NN with 5-NN and 7-NN are 0.025 and 0.005,
respectively, which indicates the difference between them is also
statistically significant.
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Figure 3. The effect of k-NN for MDA-GCNFTG’s performance on six tasks, where the abscissa axis represents the self-loop and the number of neighbors. For balanced

tasks, the average value is calculated from Accuracy, F1-score, AUC and AUPR. For unbalanced tasks, the average value is calculated from F1-score and AUPR.

The above experiments show that the k-NN algorithm can
adaptively extract the most relevant information for different
tasks and improve the classification performance.

Performance of MDA-GCNFTG in different MDA
prediction tasks

Table 3 shows the performance of the proposed MDA-GCNFTG
method for six tasks, where each task uses the prediction
model obtained after the edge is established from the optimal
k value. The results show that MDA-GCNFTG has demonstrated
its extraordinary predictive ability on balanced tasks, and
most of the metrics have reached 0.98. On unbalanced tasks,
MDA-GCNFTG does not seem to have high performance,
but the discussion in subsequent sections will show its
superiority.

On the other hand, this is the first time that the MDA
prediction problem has been involved in tasks other than
Tp-balanced tasks, and all of them have shown satisfactory
performance. It is worth noting that Tm and Td tasks are
more difficult than Tp. Because their goal is to predict new
miRNAs and new diseases, that is, predict objects that have
never appeared in the training set. In addition, we conducted
three balanced tasks on HMDD v3.0, and the results can
be seen in Supplementary Tables S2–S4, see Supplementary
Data available online at http://bib.oxfordjournals.org/. In
order to follow the previous research [207, 210, 241], we also
performed global and local leave-one-out CV on the traditional
Tp-balanced task. The satisfactory results can be seen in
Supplementary Section 2, see Supplementary Data available
online at http://bib.oxfordjournals.org/.

Effect of the novel GCN algorithm in the proposed
MDA-GCNFTG method

In order to prove that the novel GCN algorithm proposed in this
study is effective on the MDA prediction task, we compared it
with the traditional GCN algorithm. When implementing the
GCN algorithm, its experimental conditions are exactly the same
as the MDA-GCNFTG method, including 5-fold CV, data partition-
ing, random seeds, edge or graph constructions, etc.

The results show (Figure 4) that the proposed MDA-GCNFTG
method has higher performance than GCN on all six tasks.
According to the average performance evaluation metric, its
superiority on two difficult tasks (Tp and Tm tasks on unbal-
anced data) is more significant. This not only illustrates the
effectiveness of this novel GCN algorithm on MDA prediction
tasks but also proves the superiority of the novel GCN algorithm
and the MDA-GCNFTG method proposed in this study compared
to the traditional GCN method. The above point of view has also
been confirmed by experiments conducted on HMDD v3.0 (see
Supplementary Tables S5–S7, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

We also compared the time and memory differences between
the proposed novel GCN algorithm and the traditional GCN
algorithm on Nvidia GeForce RTX 3080 with 10,018 MB memory.
All the experimental conditions of this experiment are the same
as the above except the epoch is set to one. The results are
shown in Table 4. For balanced tasks, the memory consumption
of the two methods is very close. But in terms of running speed,
MDA-GCNFTG has obvious advantages, especially in Tp and Td
tasks, which is twice as fast as GCNs. On unbalanced tasks, GCNs
cannot run on Tp and Tm tasks due to insufficient memory, and
it runs very slowly on the CPU. MDA-GCNFTG can run on all
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Table 3. The 5-fold CV results for six tasks, where the Std and Avg represent standard deviation and average value, respectively

Tasks Fold Accuracy Precision Recall F1-score AUC AUPR

Tp-balanced Std 0.0035 0.0058 0.0021 0.0036 0.0005 0.0004
Avg 0.9827 0.9877 0.9775 0.9826 0.9973 0.9977

Tm-
balanced

Std 0.0153 0.0036 0.0289 0.0148 0.0050 0.0036
Avg 0.9606 0.9898 0.9312 0.9594 0.9866 0.9897

Td-balanced Std 0.0017 0.0072 0.0063 0.0037 0.0005 0.0006
Avg 0.9828 0.9888 0.9759 0.9823 0.9973 0.9976

Tp-
unbalanced

Std 0.0019 0.0248 0.0220 0.0121 0.0024 0.0098
Avg 0.9718 0.5080 0.6324 0.5628 0.9448 0.6137

Tm-
unbalanced

Std 0.0081 0.0406 0.0411 0.0255 0.0098 0.0173
Avg 0.9710 0.5024 0.6412 0.5617 0.9421 0.6042

Td-
unbalanced

Std 0.0098 0.0429 0.0350 0.0417 0.0105 0.0542
Avg 0.9451 0.2923 0.6325 0.3981 0.9253 0.4026

Figure 4. The comparison of the proposed MDA-GCNFTG method with the traditional GCN method, which reflects the effect of the novel GCN for MDA-GCNFTG’s

performance on six tasks. Acc, Pre, Rec and F1 represent the accuracy, precision, recall and F1-score, respectively. For balanced tasks, the average value is calculated

from accuracy, F1-score, AUC and AUPR. For unbalanced tasks, the average value is calculated from F1-score and AUPR.

three unbalanced tasks and only uses about 7000 MB of memory.
On the Td task, MDA-GCNFTG not only consumes less memory
than the GCN method, but it also runs much faster than the GCN
method, i.e. their running times under one epoch are 14 and 65 s,
respectively.

Comparisons of MDA-GCNFTG with classic machine
learning models

In order to illustrate the superiority of the GCNFTG model pro-
posed in this study in MDA prediction, we also compare it
with some classic machine learning algorithms, including deep
learning–based deep neural network (DNN), RF, extremely ran-
domized trees (ERTs), decision trees (DTs) and Gaussian naïve
Bayes (GNBs). The results of the above models on six tasks are
shown in Figure 5.

According to the results, the proposed GCNFTG model
is superior to other machine learning models, especially in

balanced tasks. For unbalanced tasks, although the recall of
MDA-GCNFTG is lower than other models, we should realize that
precision and recall are mutually contradictory metrics. There-
fore, the F1-score that combines the two is worthy of attention,
and it shows the superiority of MDA-GCNFTG compared to other
methods. Moreover, the average of F1-score and AUPR proves this
again. In order to fully test the superiority of the proposed MDA-
GCNFTG method compared to other classic machine learning
algorithms, we conducted a Friedman test. Although different
performance evaluation metrics have different importance on
unbalanced tasks, the test is still performed on all performance
evaluation metrics. The results show that the MDA-GCNFTG
method has the largest average rank, i.e. ranking first. Moreover,
the MDA-GCNFTG method is better than the DT, GNB or DNN
algorithm with a significance level of 0.001, and better than
the ERT algorithm with a significance level of 0.05. In addition,
the superiority of the proposed MDA-GCNFTG has also been
confirmed by experiments conducted on HMDD v3.0 (see
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Table 4. The time and memory between the proposed novel GCN algorithm and the traditional GCN algorithm

Algorithms Balanced tasks Unbalanced tasks

Tp Tm Td Tp Tm Td

Time (s) MDA-
GCNFTG

13.45 8.6 4.9 13.05 10.95 14.55

GCN 27.21 6.84 8.93 - - 65.75
Memory (MB) MDA-

GCNFTG
2081 2109 2089 7275 7257 7109

GCN 1651 1587 1509 - - 7137

Figure 5. The comparison of the proposed MDA-GCNFTG method with some classic machine learning methods on six tasks, including DNN, RF, ERTs, DTs and GNBs.

The Acc, Pre, Rec and F1 represent the accuracy, precision, recall and F1-score, respectively. For balanced tasks, the average value is calculated from accuracy, F1-score,

AUC and AUPR. For unbalanced tasks, the average value is calculated from F1-score and AUPR.

Supplementary Tables S5–S7, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

Comparisons with the state-of-the-art methods

In order to further prove the superiority of the proposed MDA-
GCNFTG method, we compare it with three state-of-the-art
methods published after 2020, including GAMEDA [56], GBDT-LR
[206] and DMA [241]. Note that all the following experiments are
carried out under the same experimental conditions, including
5-fold CV, random seed and data partitioning strategy. We
first verified the superiority of the MDA-GCNFTG method
on the traditional task Tp (i.e. balanced Tp), and the results
show that MDA-GCNFTG is better than the three state-of-the-
art methods on almost all performance evaluation metrics
(Figure 6).

Subsequently, we modified the code of GAMEDA, GBDT-LR
and DMA to adapt to the other five tasks proposed in this study
and compared them with the proposed MDA-GCNFTG method
under the same experimental conditions. The results are shown

in Figure 6. For balanced tasks, although MDA-GCNFTG has a
slightly lower recall than GAMEDA and a slightly lower precision
than DMA, overall, its performance is significantly better than
these methods. In particular, recall and precision are usually
a pair of contradictory performance metrics, and it is found
that the precision of MDA-GCNFTG is much higher than that of
GAMEDA, and the recall of MDA-GCNFTG is much higher than
that of DMA. Therefore, the comprehensive performance metrics
of recall and precision, which are F1-score and AUPR, must be
considered and show the MDA-GCNFTG is higher than GAMEDA
and DMA in these two performance metrics. Further, we
explored the reason why GAMEDA has achieved such high recalls
(that is, 1) and found that it predicted all samples as positive
samples. And AUCs of the GAMEDA are 0.5 on these two tasks,
which means that GAMEDA performs random classification, so
other performance metrics seem to be meaningless. A similar
phenomenon is appearing in the unbalanced task; thus, the F1-
score and AUPR are considered to calculate the average value
of performance evaluation metrics. And the proposed MDA-
GCNFTG also achieved better performance for unbalanced tasks.
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Figure 6. The comparison of the proposed MDA-GCNFTG with three state-of-the-art methods on six tasks under the same experimental conditions. Acc, Pre, Rec and

F1 represent the accuracy, precision, recall and F1-score, respectively. For balanced tasks, the average value is calculated from accuracy, F1-score, AUC and AUPR. For

unbalanced tasks, the average value is calculated from F1-score and AUPR.

Table 5. The summary of case studies for lung neoplasms, breast neoplasms, hsa-let-7a, hsa-let-7b and hsa-mir-1. Each case study is performed
on HMDD v2.0 and an integrated data, which combine HMDD v3.2, miR2Disease and dbDEMC2 databases. The above two types of data are
represented as 1 and 2 in the Data column, respectively. The Pos and Neg represent the number of positive and negative samples in the
corresponding data. The FP, FN and TP are false positive, false negative and true positive of predicting results. The Top n/m column represents
n of top m new MDAs are confirmed. The F1-score, AUC and AUPR are the performance of the corresponding data

Data Pos Neg FP FN TP Top n/m F1-score AUC AUPR

Lung 1 13 482 24 4 9 0.39 0.93 0.27
2 28 467 9 4 24 27/28 0.79 0.97 0.77

Breast 1 24 471 17 9 15 0.54 0.94 0.38
2 35 460 6 9 26 26/35 0.78 0.96 0.72

hsa-let-7a 1 45 338 12 12 33 0.73 0.93 0.81
2 50 333 7 12 38 38/45 0.80 0.94 0.84

hsa-let-7b 1 38 345 25 8 30 0.65 0.94 0.83
2 47 336 16 8 39 36/47 0.76 0.95 0.86

hsa-mir-1 1 46 337 25 14 32 0.62 0.94 0.69
2 61 322 10 14 47 47/57 0.80 0.97 0.86

Figure 6 shows the significant superiority of MDA-GCNFTG
over the state-of-the-art methods and also confirms the view
that Tm and Td tasks are more difficult than Tp tasks and,
at the same time, proves the robustness of the proposed
MDA-GCNFTG method; that is, satisfactory results have been
achieved on Tm, Td and unbalanced tasks. In addition, the
superiority of the proposed MDA-GCNFTG has also been
confirmed by experiments conducted on HMDD v3.0 (see
Supplementary Tables S5–S7, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

Case studies

In order to further verify the performance of the proposed MDA-
GCNFTG method on the MDA prediction problem, this study
conducted two types of case studies for diseases and miRNAs,
respectively. And this is the first time that case study for miRNA
in the field of MDA prediction has been performed. On the other
hand, we discuss the results of case studies in two types of data.
The first data is the HMDD v2.0 database, which was used in this
study. However, this database was proposed in 2014, and many

new MDAs have been discovered during 7 years. Therefore, we
integrated HMDD v3.2 [235], miR2Disease [242] and dbDEMC [243]
database as the second data. It is worth noting that the second
data is an update and expansion based on the first data.

For case studies on diseases, we chose lung neoplasms and
breast neoplasms. Lung cancer is the most common fatal cancer
with a high incidence. Although new drugs and treatments are
being developed, the late presentation, poor prognosis and low
cure rate still result in its high mortality rate. Many studies
[244–246] have shown that some miRNAs can be used as
biomarkers for lung cancer. Breast cancer is one of the most
common cancers in women, and early detection and treatment
can improve the prognosis of patients [247]. However, its
complex clinical behavior and diverse histopathological patterns
make huge challenge [247]. Evidence [247] shows that there is a
close relationship between some miRNAs and breast cancer, so
related miRNAs can be used as biomarkers to detect and prevent
breast cancer.

Through extensive research on miRNAs, it has been deter-
mined that the let-7 miRNA family and hsa-mir-1 are related
to a variety of human diseases [248–250]. Hsa-let-7a can induce
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diseases with abnormal expression [251–253]. Hsa-let-7b is an
important target of epigenetic mechanisms in various diseases
[253–256]. Recent studies have also reported the association
between hsa-mir-1 and various complex human diseases [257–
259] and found the frequent methylation of hsa-mir-1 in colorec-
tal cancer and believed that hsa-mir-1 played a tumor suppres-
sor effect by controlling the expression of epithelial transition
factor [260, 261].

The results and performances of the five case studies are
listed in Table 5. It is clear that the case studies conducted
on integrated data are convincing, and they all show satisfac-
tory results, proving that the proposed MDA-GCNFTG method
is capable of predicting the undiscovered potential MDA for
new miRNAs and new diseases. The difference between the
number of positive samples and TP on the two types of data
also confirms this view and also reflects that the performance
of the proposed MDA-GCNFTG method in this study is seriously
underestimated.

Conclusion
MiRNAs have been shown to be closely related to numerous com-
plex human diseases. Thus, predicting potential MDAs is essen-
tial to understand, prevent and treat diseases. This study designs
a novel graph-construction strategy by using the k-NN algorithm
and a novel GCN model based on graph sampling technology to
do MDA prediction, that is, the MDA-GCNFTG method. Moreover,
compared with other studies that only predict new MDAs based
on balanced data, this study proposes two new experimental
settings for predicting new miRNAs and predicting new diseases,
and the above three experimental settings will be performed on
balanced and unbalanced data, respectively. The results show
that the proposed MDA-GCNFTG method has achieved satisfac-
tory results on all six tasks and is superior to several classic
machine learning algorithms and the most advanced MDA pre-
diction methods. Moreover, we also conducted case studies for
both miRNAs and diseases, which confirmed the effectiveness
of our method. In the future, we hope to integrate other bio-
logical information and apply the data preprocessing technique
on unbalanced data to obtain even better results. Moreover,
most of the studies on MDA prediction (including this study)
used the similarity-based measures derived from the known
MDAs on the whole data set, which leads to the overoptimistic
performance assessment of the current studies. In the next step,
we will try to develop a more suitable feature representation
method. For example, after dividing the training set and the
test set, use the test sample masking method to first calculate
the similarity among the training set samples and then use
the k-NN algorithm to construct the similarity among test set
samples.

Key Points
• This study designs a novel graph construction strat-

egy by using the k-NN algorithm and a novel GCN
model based on graph sampling technology to do MDA
prediction, that is MDA-GCNFTG method.

• This study proposes two new experimental settings
for predicting new miRNAs and predicting new dis-
eases, and all experimental settings will be performed
on balanced and unbalanced data, respectively.

• The results show that the proposed MDA-GCNFTG
method has achieved satisfactory results on all six

tasks and is superior to classic machine learning
algorithms and the state-of-the-art MDA prediction
methods.

• We also conducted case studies for both miRNAs and
diseases, which confirmed the effectiveness of our
method.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.

Data availability

The data and source code are available from https://github.
com/a96123155/MDA-GCNFTG.
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