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Abstract

Neuropeptides acting as signaling molecules in the nervous system of various animals play crucial roles in a wide range of
physiological functions and hormone regulation behaviors. Neuropeptides offer many opportunities for the discovery of
new drugs and targets for the treatment of neurological diseases. In recent years, there have been several data-driven
computational predictors of various types of bioactive peptides, but the relevant work about neuropeptides is little at
present. In this work, we developed an interpretable stacking model, named NeuroPpred-Fuse, for the prediction of
neuropeptides through fusing a variety of sequence-derived features and feature selection methods. Specifically, we used
six types of sequence-derived features to encode the peptide sequences and then combined them. In the first layer, we
ensembled three base classifiers and four feature selection algorithms, which select non-redundant important features
complementarily. In the second layer, the output of the first layer was merged and fed into logistic regression (LR) classifier
to train the model. Moreover, we analyzed the selected features and explained the feasibility of the selected features.
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Experimental results show that our model achieved 90.6% accuracy and 95.8% AUC on the independent test set,
outperforming the state-of-the-art models. In addition, we exhibited the distribution of selected features by these tree
models and compared the results on the training set to that on the test set. These results fully showed that our model has a
certain generalization ability. Therefore, we expect that our model would provide important advances in the discovery of
neuropeptides as new drugs for the treatment of neurological diseases.
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Introduction
Neuropeptides are small peptides composed of approximately
3–100 amino acids in length, acting as signaling molecules in
the nervous system of various animals such as invertebrates
and mammals [1]. They act as neurotransmitters or peptide
hormones to possess a wide range of physiological functions and
hormone regulation behaviors [2]. Because of the crucial roles of
neuropeptides, many technologies focused on identifying neu-
ropeptides. The traditional methods for the identification of
neuropeptides were liquid chromatography–tandem mass spec-
trometry (LC–MS/MS) based on bioassay, receptor binding assay,
and genetic analysis [3–6]. However, the experimental process
is time-consuming and expensive. Instead, computational mod-
els can provide an alternative to the tediously experimental
approaches for predicting neuropeptides.

Recently, several computational tools and databases have
been developed to accelerate the discovery and identification
of neuropeptides. NeuroPep [7] is the most comprehensive
database that contains the neuropeptide entries extracted from
Neuropeptide [8] and NeuroPedia [9] databases. In addition,
the BLAST programs are widely used tools for searching
protein and DNA databases for sequence similarities [10].
However, neuropeptides are still hard to be identified by
using sequence homology inference-based methods, since
neuropeptides are highly short and diverse in sequences, and
challenging to discover using standard sequence-similarity
methods. To address these challenges, some studies proposed
machine learning-based methods to identify neuropeptides.
The development of machine learning-based methods has
facilitated the identification of active peptides in drug discovery.
Neuropod [11] and NeuroPP [12] are tools, which predict the
NP precursors based on machine learning algorithms. Agrawal
et al. have presented the support machine learning (SVM) model
for identifying insect neuropeptides in 2019 [13]. In 2020, Bin,
et al have proposed the predictor named PredNeuroP based on a
two-layer stacking method [14].

However, up to now, these machine learning-based models
lacked interpretability, and the accuracy of these models still
have remaining room for improvement. In order to overcome
these difficulties, we propose a more robust model for identify-
ing neuropeptides. The coding scheme should capture enough
sequence information and ensure the diversity and reliability
of sequence information. In recent years, a variety of encoding
methods on peptide sequences have been proposed, such as
adaptive skip dipeptide composition (ASDC) [15], g-gap dipep-
tide composition (GGAP) [16] and position-specific amino acid
composition (PSAAC) [17]. One simple approach to utilize these
various features is concatenating them, resulting in bringing the
curse of dimensionality causing high computation complexity
[18]. These high-dimensional feature vectors also increase the
possibility of correlation or redundancy among its feature ele-
ments. However, feature selection can help decrease the com-
putational time and complexity of the final prediction model,

and also provide more insights into the data abundance. Just
one feature selection method is less reliable than the combina-
tion of multiple feature selection methods, which filter features
based on different evaluation criteria. Furthermore, in the past
few years, ensemble learning has widely been used in vari-
ous bioinformatics applications and data competitions [19, 20].
Through strategically generating and combining multiple weak
classifiers, a strong classifier [21] can improve the robustness of
the model. Considering the existing multiple machine learning
methods and feature selection methods mentioned above, we
combine ensemble learning with feature selection algorithms
together to reduce the wrong decision of a single learner and
the low fault tolerance of a single feature selection method.
Motivated by the above factors, we build our workflow as fol-
lows: Firstly, peptide sequences were encoded by a variety of
features and then were merged. Secondly, a variety of feature
selection methods were applied to these features for getting the
condensed set of effective features, which were fed into the first
layer of the classifier, which is composed of three tree learners.
Finally, the predicted class probability of the first layer is used as
the input of the second layer to train the second layer (Logistic
Regression) to get the final result.

Materials and methods
Datasets

The performance of the model depends on the quantity and
quality of the data. The same benchmark dataset as [14] was
used in this work in order to fairly compare our method with
previous models. The distribution of the training set and test
set are shown in Figure S1. Moreover, we used the same ratio
to divide the total data into the training and test data sets. 80%
positive and negative data sets (3880 sequences in total) were
selected to construct the training set, and the remaining 20%
data sets (970 sequences in total) were selected to construct the
test set. In addition, we split our training set into 10-folds and
performing 10-fold cross-validation (CV).

Feature representation

In this study, we used six different feature encoding schemes
to encode the peptide sequences into a feature vector, which
included AAC, DPC, GGAP, CTD, ASDC and PSAAC. Briefly, each
encoding definition is explained in the following subsections:

AAC

AAC consists of the frequency of all 20 natural amino acid types
in the peptide sequences. The calculation of AAC is as follows:

f (a) = N(a)
L

, a ∈ {A, C, D, . . . , Y} (1)
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where N(a) is the total number of amino acid type a, while L is
the length of the peptide.

DPC

DPC is a 400-dimensional feature vector, which is computed as
follows:

f
(
a, b

) = N
(
a, b

)
L − 1

, a, b ∈ {A, C, D, . . . Y} (2)

where N(a, b) is the total number of dipeptides denoted by amino
acid types a and b.

GGAP

Dipeptides have been widely used in the field of protein predic-
tion [22, 23]. However, it can only reflect the correlation between
two adjacent amino acids. In fact, amino acids separated by
two distant residues in the sequence may be adjacent in three-
dimensional structure [24]. Therefore, we used G-GAP dipeptide
composition (DC) to transform the protein sequence into the
characteristic carrier. GGAP can be computed as follows:

Fg = [
pg

1, pg
2, . . . , pg

400

]T
(3)

where T denotes the transposition of the feature vector. pg
i is the

frequency of the i-th g-gap dipeptide and is defined as:

pg
i = ng

i∑400
i=1 ng

i

= ng
i

L − g + 1
(4)

where ng
i is the number of the i-th g-gap dipeptide along the

whole sequence. 0-gap dipeptide describes the correlation
between two adjacent residues, and g-Gap dipeptide indicates
the correlation between two residues with the interval of g
residues. In this paper, due to the short length of neuropeptides,
the parameter g is determined as 3.

CTD

The distribution pattern of amino acid physicochemical prop-
erties (PCPs) [25] encoded by CTD. As shown in Table S1, 20
standard amino acids were divided into three categories accord-
ing to seven PCPs. The composition (C) is expressed as a 21-
dimensional vector, and it is calculated as follows:

C(a) = N(a)
L

, a = 1, 2, 3 (5)

where N(a) is the total number of amino acid class a. The tran-
sition (T) is encoded as a 21-dimensional vector, indicating that
type A residues are followed by type B residues or type B residues
are followed by type A residues. It can be calculated as follows:

⎧⎪⎪⎨
⎪⎪⎩

T
(
a, b

) = N(a,b)+N(b,a)
L−1

T (a, c) = N(a,c)+N(b,c)
L−1

T
(
b, c

) = N(b,c)+N(c,b)
L−1

(6)

where M(a,b) represents the number of the dipeptide ab in the
sequence. The distribution (D) descriptor consists of five values
of three classes, based on the score of the entire sequence, where
the first residual of a given group is located, containing 25, 50, 75

and 100% of events. D is encoded as a 105-dimensional vector. In
summary, the CTD encoding is a 147-dimensional vector.

ASDC

The adaptive k-skip-n-gram model is an upgraded version of
the skip-n-gram model. The method adapts to the different
lengths of sequences in the dataset and includes more distance
information in the features. ASDC can be computed as follows:

FV =
{

N
(
αm1 αm2 . . . αmn

)
N

(
Tskipgram

) |1 ≤ m1 ≤ 20, ≤ m1 ≤ 20, . . . , ≤ mn ≤ 20

}

(7)

Tskipgram = ∪k
a=1Skip (DT = a)

where Skip(DT = a) = {AiAi+a+1 . . . Ai+a+n-1|1 ≤ i ≤ L−a, 1 ≤ a ≤ k}
[26]. This method considers the n residues with distances 1 to k
and k is the length of each sequence.

PSAAC

PSAAC is a variant of AAC. Considering the importance of termi-
nal residues for the structure and function of bioactive peptides
[27, 28], we extracted the feature codes of the first and last five
residues of N-terminal and C-terminal (NT5 and CT5) for the
prediction model. It can be computed as follows:

f
(
a, i

) = N
(
a, i

)
M(i)

(8)

where N
(
a, i

)
is the number frequency of amino acid a at position

i and M(i) denotes the number of i-th position in all sequences.

Workflow

In this work, the workflow of NeuroPpred-Fuse consists of the
following steps (Figure 1): Firstly, we used six types of features
to encode the peptide sequences, and then combined these
features and performed feature selection. For the combined fea-
tures, we used five different feature selection algorithms (actu-
ally four, one is discarded due to bad performance relatively) to
select non-redundant important features and filtered the one of
them which had relatively inferior performance. Then, we fused
three base classifiers selected from various single classifiers
with the chosen feature selection algorithms in the first layer.
On the second-layer learning, the outputs of the first-layer are
merged and imported into a logistic regression classifier to train
the final model, which outputs the final prediction results. The
detail of our model was introduced in the following subsections.

Feature selection

Feature selection is an important step in the application of
machine learning and there are some reasons for this. The
merged data sets are described with far too many variables for
building this practical model. Usually, most of these variables
are irrelevant to the model performance and their relevance
is not known in advance, especially in biology [29]. Feature
selection methods are mainly categorized into three types: fil-
tering method, wrapping method, and embedding method. In
this study, rather than to the embedding method, we chose the
other two types of classic representative algorithms, namely
Relief feature selection (Relief) and Boruta algorithm belonging
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Figure 1. Workflow of NeuroPpred-Fuse. It involves the following steps: (i) Neuropeptides was first represented in six different features; (ii) in the first layer, six feature

encodings were analyzed and merged , and then perform feature selection by four methods. Subsequently, the selected features were used as an input for three

classifiers resulting in their corresponding prediction models; (iii) the predicted probability of the first layer was fused and inputted to LR for development of the final

prediction model in the second layer.

to wrapping method, variance-based and F-score-based algo-
rithms, which are parts of filtering method. Briefly, the Relief
algorithm [30] is a feature-weighting algorithm in which the
correlation of various features and categories gives different
weights to features, and features with weights less than a certain
threshold will be removed. The correlation between features
and categories in the Relief algorithm is based on the ability of
features to distinguish close samples. Boruta algorithm [31] is a
wrapper built around the random forest classification; However,
both F-score [32] and variance-based [33] feature selection meth-
ods use statistics to screen irrelevant features and filter redun-
dant features. At the same time, we also used a feature dimen-
sionality reduction method named Kernel Principal Component
Analysis (KPCA) [34] is a nonlinear data processing method,
whose core idea is to project the original spatial data into the
high-dimensional feature space through a nonlinear map, and
then carry out PCA based analysis in the high-dimensional
feature space. These feature selections methods or dimension
reduction have different metrics and capture different features
benefitting to identify neuropeptides. Therefore, we combine
their respective strength by fusing them.

Machine learning classifiers

From the view point of the machine learning, the prediction
performance not only depends on feature encodings but also
the choice of the classifiers. For example, SVM [35], random
forest (RF) [36], Gradient Boost [37], XGBoost [38] and K-Nearest
Neighbors (KNN) [39] have been widely used for constructing
classification models for identifying various types of peptides.
In this study, seven different machine learning classifiers were
employed (i.e., SVM, RF, Naïve Bayes, GBDT, Artificial Neural
Network (ANN) [40], KNN, XGBoost). Specifically, XGBoost, GBDT,
and RF are commonly typical tree models, which refer to the
model such as the decision-making tree with tree branch struc-
ture based on feature space partitioning. As a representative
ensemble learning method, the stacking framework integrates
different base-learners (first-layer-learners) with different fea-
ture selection algorithms based on meta-learner (second-layer-
learner) to pull together advantages of various feature selection
methods and construct a well-performed predictor. On the first

layer, six features are combined as the input feature vector, and
the four feature selection methods (the kernel PCA has been
discarded) and three base classifiers are combined as the 12
base-learners, which are constructed on the training set. In this
work, 10-fold CV was adopted to train the base classifiers and
obtain the prediction on the test set in the first layer (Figure 2).
On the second layer, a second-layer-learner with LR classifier
is trained based on the outputs of the first layer, which is 24-
dimensional probabilistic vector, and the output of this layer is
the final result.

Performance measures

In this study, sensitivity (Sen), specificity (SPE), accuracy (ACC),
and Matthew’s correlation coefficient (MCC), which are com-
monly used in binary classification [41–46], were used to evaluate
the performance of the model. They are calculated as follows:

Sensitivity = TP
TP + FN

(9)

Specificity = TN
TN + FP

(10)

ACC = TP + TN
TP + TN + FN + FP

(11)

MCC = TP ∗ TN + FP ∗ FN√
(TP + FN) (TP + FP) (TN + FP) (TN + FN)

(12)

where TP, TN, FP and FN represent the number of true pos-
itive, true negative, false positive and false negative samples,
respectively. In addition, the area under the receiver operating
characteristic curve (AUC-ROC) was established to evaluate the
performance of the model. The larger the AUC-ROC, the better
the predictive performance of the predictor. On this basis, the 10-
fold CV technique is used to evaluate the performance of various
models on the training data sets.

Results and discussion
Feature representation comparison

In order to feed the original sequence into different machine
learning classifiers, we utilized six different sequence-based
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Figure 2. The framework of the stacking strategy used in NeuroPpred-Fuse. (i) The training dataset has been split into 10 parts. The nine of them was used to train the

model and one was used to predict corresponding output in the first layer; (ii) the test set was performed the same process as the training set but average the prediction;

(iii) through combining different machine learning classifiers, multiple combinations of output from the first layer were fed into the second layer (meta-classifier) and

generating the final output.

encodings, including AAC, DPC, GAPC, CTD, PSAAC, ASDC and
their merged features and evaluated its ability to predict neu-
ropeptides or non-neuropeptides by integrating them with seven
kinds of classification algorithms (SVM, RF, GBDT, XGBoost, KNN,
NB and ANN). In total, we generated 36 classifiers (ANN has not
been evaluated on single feature encoding as some of them are
too sparse and low dimensional) based on individual features
and 7 classifiers of merged features. Table 1 showed that SVM, RF,
GBDT, XGBoost, KNN, NB and ANN yielded accuracy in the range
of 64.0–84.0%, 79.4–88.5%, 76.7–87.5%, 80.8–89.8%, 62.6–78.8%, 66–
76%, 78.9%, respectively, with respect to the seven different
encodings. As shown in Figure 3 and Table 1, it could be noted
that the features of ASDC, PSAAC, GGAP and AAC have relatively
high accuracy in the six classification algorithms, especially the
ASDC and CTD encoding. This observation indicates that CTD
encoding and ASDC encoding have higher discriminative power
for the prediction of neuropeptides as compared to other types
of features. From Figure 3, we also observed that the three tree-
based models (RF, GBDT, XGBoost) achieved similarly high per-
formance relative to other models. In addition, these three tree-
based models have excellent performance in merged features,
especially XGBoost. They all have achieved accuracy more than
85.0%. On the other hand, we examined the remaining models
and noted that these models achieved relatively low accuracy
with no more than 85.0%. Therefore, instead of focusing on
making use of all models like the traditional stacking method,
we selected the three tree-based models (RF, GBDT, XGBoost)
as our base classifiers in the first layer and the merged fea-
tures as our final input. Furthermore, we also applied the ANN
(Fully connected network of 1407 × 128 × 2) to fit the merged
feature, the result showed the inferior performance of ANN due
to fewer data.

Feature selection comparison

The goal of this section is to compare the performance of various
feature selection methods and obtain the filtered features by
using these methods. We evaluated the results of the five feature
selection algorithms based on the best classifier mentioned
above (XGBoost). From Figure 4, we noted that most feature
selection methods achieved about 90.0% accuracy, except KPCA.

The Relief algorithm achieved the highest accuracy at about 780-
dimensions and the feature selection method based on F-score
and based on variance also achieved relatively high accuracy at
1200-dimensions and 1140-dimensions respectively in Figure 4.
On the other hand, as the results are shown in Table 2, the Boruta
algorithm also achieved about 90.33% and the optimal size can
be determined without our operations. Considering these fea-
ture selections methods having different metrics and capture
different features benefit to identify neuropeptides, we selected
Boruta, Relief, F-score-based, and variance-based as our final
feature selection methods for improving the performance of our
kinds of models. Consequently, we fused their advantages into
different machine learning models mentioned above. Practically,
there are various ways to integrate multiple prediction models,
such as the ensemble method [47, 48] and meta-predictor [47, 49–
53]. Herein, we employed a meta-predictor approach to develop
the final model. Specifically, the predicted probabilities from
the above-mentioned base 12 predictors (4 feature selections ×
3 classifiers) were concatenated and considered as a new 24-
dimensional feature vector representing multi-view information
[54]. Hence, the 24D probabilistic vector was considered as the
final input fed into the second layer (LR).

As above mentioned, we obtained the features selected
by four methods (Relief, Boruta, F-score-based, and Variance-
based). In this section, we analyzed statistically, which features
are crucial for identifying neuropeptides and whether the
feature set selected by one method is a subset of another feature
set filtered by another method. As shown in Figure 4 and Table 2,
it could be noted that the Boruta algorithm selected fewer
dimensions and achieved relatively high accuracy (90.33%).
This observation indicated that it selected the features that
are most important to the classifier. Therefore, in order to
avoid overfitting, this Boruta algorithm could be considered.
The feature selection algorithms based on statistics (F-score-
based and Variance-based) seemed to remain more features in
Figure 4. However, Relief not only achieved the best accuracy but
also selected no too many features. In addition, Figure 5 showed
that these features selection algorithms all remained fewer
features about DPC coding in their total features, respectively.
This observation shed a light on us that DPC coding could not
provide great information for classifying neuropeptides, due to
its sparsity in short and few peptides. By contrast, we noted that
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Table 1. Performance comparison of different combinations of features and classification algorithms by 10-fold CV on the training set

Classifier PSAAC GGAP ASDC DPC CTD AAC Merged

XGBoost 0.808 0.807 0.862 0.840 0.876 0.843 0.898
SVM 0.809 0.807 0.840 0.839 0.810 0.812 0.640
RF 0.827 0.818 0.861 0.846 0.853 0.835 0.885
KNN 0.782 0.713 0.773 0.744 0.784 0.788 0.626
Naïve Bayes 0.753 0.728 0.760 0.750 0.658 0.735 0.741
GBDT 0.794 0.784 0.841 0.816 0.841 0.812 0.875
ANN \ \ \ \ \ \ 0.789

Note: ANN just be trained on combined features as some single features are less dimension.

Figure 3. Prediction performance of seven classifiers utilizing seven different coding schemes based on the training dataset.

Figure 4. The effect of four different dimensionality reduction algorithms for

identifying neuropeptides.

CTD coding, PSAAC coding, and AAC coding with low dimensions
have a significant proportion of the selected features. Instead of
making efforts to determine the best feature selection algorithm
among these methods, we fused their advantages into our
model. This further suggests that these features (CTD, PSAAC,
AAC) are better in the case of small data and short peptides.

Table 2. Best performance of four feature selections by 10-fold CV
on the training set

Feature selection Dimension Accuracy

Relief 710 90.62%
F-score 1200 89.23%
Variance 1140 90.24%
Boruta 76 90.33%

Note: The accuracy KPCA was not shown in this table but shown in Figure 6.

Furthermore, we analyzed whether there are a lot of common
features after these four feature selection algorithms. If there
are a great many of repeated features, discarding some feature
selection algorithms should be considered. From Figure 6, we
noticed that these four feature selection algorithms exactly do
not choose the same feature among each other. Herein, although
the most of features selected by Boruta are contained by the
other three algorithms, we do not throw it away as it is a very
neat feature selection algorithm avoiding overfitting.

Feature analysis

To identify the most important features beneficial for classify-
ing neuropeptides, we ranked the feature importance and ana-
lyzed the distribution of them. The features screened by these
tree-based models showed a similar distribution (Figure S2). As
shown in Figure 7 the feature score ranking of the first ten
features of all the models selected where the 704th dimension
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Figure 5. The feature analysis of four different dimensionality reduction algorithms on the prediction accuracy of the training dataset.

belonging to ASDC coding achieved the highest score. Further-
more, Figure 8 showed that the distribution of the top ten fea-
tures that were finally screened. First of all, we noticed that
GGAP (0–399) coding and DPC (820–1219) coding ratio is rela-
tively low, corresponding to selected features distribution by four
feature selection methods before. On the other hand, we can
observe from Figure 6 that in all the selection of the top ten
features, GGAP coding and DPC coding is so little, which sug-
gested that the two types of features contribute less to our model
for identifying neuropeptides. Secondly, as shown in Figures 7
and 8, the proportion of ASDC coding and AAC (800–819) cod-
ing is relatively moderate and still have a certain proportion
while CTD coding and PSAAC (1367–1406) coding are the two
most important types of features, which have small dimen-
sion. This again indicates that they are beneficial for classifying
neuropeptides.

Comparison of the proposed predictor and existing
predictors

At last, we compare our models with other state-of-art models.
The prediction result showed that the proposed NeuroPpred-
Fuse achieved MCC, ACC, Sn, Sp and ROC of 81.3, 90.6. 88.2,
93.0 and 95.8%, respectively. In order to determine whether
our approach could improve the performance and outperform
the existing models. First, the test data set was independently
evaluated by the NeuroPpred-Fuse predictive model, and the
performance indicators were shown in Table 3. In addition,
as can be seen from Table S3, the similar performance of the

NeuroPpred-Fuse model on the training data set indicates
that its generalization ability is relatively great, and it is an
effective tool to distinguish between neuropeptides and non-
neuropeptides. More than that, we also compared our model
with other single ML algorithms without feature selection. As
shown in Figure S3 and Table S3, our model has the best per-
formance and generality. (All the hyperparameter adjustments
are shown in Table S2), while the other models are either less
accurate on the test set or overfitting. At last, we compared the
performance of our method with the NeuroPIpred [13] and Pred-
NeuroP [14], two existing tools for insect neuropeptides iden-
tification. NeuroPIpred did not perform well in the test dataset
because it included neuropeptides from all phyla, not only insect
neuropeptides, the performance of NeuroPIpred is no more than
90.0% in the test dataset. It is observed that NeuroPpred-Fuse
achieved higher accuracy in discriminating neuropeptides from
non-neuropeptides.

Conclusion
Accurate identification of neuropeptides can help accelerate
peptide-based drug discovery in search of newly effective thera-
peutic peptides. Therefore, in this study, we proposed a two-layer
predictive framework, namely NeuroPpred-Fuse, to improve the
identification of neuropeptides based on sequence information.
In order to build an effective prediction model, a novel stacking
scheme based on three different tree ML models and four feature
selection algorithms in conjunction with six feature encoding
covering comprehensive sequence information was built to
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Figure 6. The proportion of selected features in the four feature selection methods. (A) The proportion of selected features in the three feature selection methods

(variance, Boruta, relief); (B) the proportion of selected features in the three feature selection methods (F-score, Boruta, relief); (C) the proportion of selected

features in the three feature selection methods (variance, Boruta, F-score); (D) the proportion of selected features in the three feature selection methods (variance,

F-score, relief).

generate 24 probabilistic features. Subsequently, these multi-
view probabilistic features were concatenated to construct the
final prediction model. Furthermore, in order to find the features
that are meaningful to the recognition of neuropeptides, we
also do some feature analysis and model explanatory analysis.
Experiments have proved that for short peptide sequences
with less data, DPC encoding and GGAP encoding, such as
high-dimensional sparse feature coding, are not the optimal
coding scheme. On the contrary, low-dimensional coding
methods such as CTD coding and PSSAAC encoding, which
capture more significant information in less data relative
to other features have better performance. Rigorous cross-
validation and independent test demonstrated that NeuroPpred-
Fuse significantly outperformed existing methods and other
conventional ML algorithms. It is anticipated that our proposed

predictor, NeuroPpred-Fuse will serve as a useful service, high-
throughput, and cost-effective tool for large-scale analysis of
therapeutic peptides and also in the timely identification of
neuropeptides. In comparison with the state-of-the-art models,
our proposed method performs multiple feature selection and
screens important features beneficial for identifying neuropep-
tides. Meanwhile, we develop a more robust model, which fuses
the three base classifiers with four feature selection methods.
We expect that NeuroPpred-Fuse could offer an important
advancement for the research communities on the discovery
of neuropeptides as new drugs or targets for the treatment of
nervous-system disorders in different phyla [1, 55]. Furthermore,
it would be expected that integrating other feature encodings
[56, 57] and ML algorithms [58–62] might further improve the
performance.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/6/bbab310/6350884 by Shanghai Jiao Tong U

niversity Library user on 11 N
ovem

ber 2021



NeuroPpred-Fuse 9

Table 3. Best performance of four feature selections on independent dataset

Method ACC Sp Sn MCC AUC-ROC

NeuroPpred-Fuse 0.906 0.930 0.882 0.813 0.958
NeuroPIpred1 0.536 0.736 0.331 0.074 0.581
PredNeuroP2 0.897 0.907 0.886 0.794 0.954

1Agrawal, P., et al., NeuroPIpred: a tool to predict, design and scan insect neuropeptides. Scientific Reports, 2019. 9.
2Bin, Y., et al., Prediction of Neuropeptides from Sequence Information Using Ensemble Classifier and Hybrid Features. J Proteome Res, 2020. 19(9): 3732–3740.

Figure 7. Feature importance score sorting.

Key Points
• This study designs a novel ensemble strategy by fusing

feature selection algorithms, which select a multi-
view feature from different evaluation metrics and
three tree-based models in identifying neuropeptides

• Our model consists of two layers and the second
layer is fed from the first layer, which is multi-view
probabilistic features.

• This study analyzes important features beneficial
for predicting neuropeptides and non-neuropeptides
in common features. Non-sparse low dimensional
features are significant for peptide prediction in
small data.

• The results show that the proposed NeuroPpred-Fuse
model has achieved satisfactory results in compari-
son with the state-of-the-art neuropeptide prediction
methods.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

Figure 8. Distribution of top 10 features of tree-based models.

Data availability

The data and source code for this project is freely available
at: https://github.com/mingmingjiang1/NeuroPpred-Fuse.
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