Published online 26 May 2021

Nucleic Acids Research, 2021, Vol. 49, Web Server issue

W469-W475
https:lldoi.orgl10.1093/narlgkab398

NetGO 2.0: improving large-scale protein function
prediction with massive sequence, text, domain,
family and network information

Shuwei Yao' 2, Ronghui You'-2, Shaojun Wang “?, Yi Xiong?, Xiaodi Huang* and

Shanfeng Zhu ©2:5:6.7.8"

School of Computer Science, Fudan University, Shanghai 200433, China, ?Institute of Science and Technology for
Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China, 3Department of Bioinformatics and
Biostatistics, Shanghai Jiao Tong University, Shanghai 200240, China, *School of Computing and Mathematics,
Charles Sturt University, Albury, NSW 2640, Australia, °Key Laboratory of Computational Neuroscience and
Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China, 8MOE Frontiers
Center for Brain Science, Fudan University, Shanghai 200433, China, ’Zhangjiang Fudan International Innovation
Center, Shanghai 200433, China and 8Shanghai Key Lab of Intelligent Information Processing, Fudan University,

Shanghai 200433, China

Received March 11, 2021; Revised April 11, 2021; Editorial Decision April 22, 2021; Accepted May 04, 2021

ABSTRACT

With the explosive growth of protein sequences,
large-scale automated protein function prediction
(AFP) is becoming challenging. A protein is usu-
ally associated with dozens of gene ontology (GO)
terms. Therefore, AFP is regarded as a problem of
large-scale multi-label classification. Under the learn-
ing to rank (LTR) framework, our previous NetGO
tool integrated massive networks and multi-type in-
formation about protein sequences to achieve good
performance by dealing with all possible GO terms
(>44 000). In this work, we propose the updated
version as NetGO 2.0, which further improves the
performance of large-scale AFP. NetGO 2.0 also in-
corporates literature information by logistic regres-
sion and deep sequence information by recurrent
neural network (RNN) into the framework. We gen-
erate datasets following the critical assessment of
functional annotation (CAFA) protocol. Experiment
results show that NetGO 2.0 outperformed NetGO
significantly in biological process ontology (BPO)
and cellular component ontology (CCO). In partic-
ular, NetGO 2.0 achieved a 12.6% improvement over
NetGO in terms of area under precision-recall curve
(AUPR) in BPO and around 2.6% in terms of F,a
in CCO. These results demonstrate the benefits of
incorporating text and deep sequence information
for the functional annotation of BPO and CCO. The

NetGO 2.0 web server is freely available at http:
/lissubmission.sjtu.edu.cn/ng2/.
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INTRODUCTION

With great biomedical and pharmaceutical significance,
identifying the functions of proteins can help understand
life at the molecular level (1). Launched in 1998, Gene On-
tology (GO) is widely used for describing the functions of
genes/proteins (2). To date, GO contains 44 117 biological
concepts (January 2021), covering three different domains:
molecular functional ontology (MFO), biological process
ontology (BPO) and cellular component ontology (CCO).
Due to the development of sequencing technology, there has
been an explosive growth in the number of available protein
sequences. However, only a fraction of the sequences have
experimentally supported functional annotations. For ex-
ample, proteins with experimental GO annotations account
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for 0.1% or less of total sequences in UniProKB (March
2021) (3). Elucidating the functions of proteins by conduct-
ing biochemical experiments is time-consuming and expen-
sive. Therefore, it is imperative to design high-performance
AFP algorithms to fill the gap between the increasing num-
ber of protein sequences and the limited number of known
functional annotations.

As part of the efforts to boost the development of effec-
tive and efficient AFP, critical assessment of functional an-
notation (CAFA) has been held four times to date: CAFA1
in 2010-2011, CAFA2 in 2013-2014, CAFA3 in 2016-2017
and CAFA4 in 2019-2020 (under evaluation) (4-6). Given
about 100 000 protein sequences, the participants have been
required to submit their predicted GO terms (relevant to
target proteins) before a deadline (T0) since CAFA2. For as-
sessing the performance of different AFP methods, CAFA
uses a time-delayed evaluation process. Specifically, the or-
ganizers wait a few months (T1) to gather test proteins with
newly experimental annotations as the benchmark data.
There are two types of proteins in the benchmark: no-
knowledge and limited-knowledge proteins. Both types of
proteins receive the first experimental annotation in a target
domain between T0O and T1. However, no-knowledge pro-
teins do not have any experimental annotations before TO,
while limited-knowledge proteins do before TO in at least
one of the other domains. Here we focus on no-knowledge
proteins as the vast majority of proteins do not have any
experimental annotations.

As mentioned before, AFP can be regarded as a challeng-
ing problem of large-scale multilabel classification, where
each protein is an instance with each GO term as one of
its labels. The challenges are from two main aspects: the la-
bel (GO) and instance (protein). For the label side, AFP
must be efficient in dealing with the scaling problem of a
large number of GO terms. With >40 000 GO terms in
total, each protein is usually associated with only dozens
of terms. For the instance side, AFP must be effective in
integrating all kinds of protein information. CAFA has
demonstrated the research community’s efforts in address-
ing these challenges. Previously, we developed GOLabeler,
the best performing method in CAFA3 for all three GO
domains in terms of F.x (7). GOLabeler addressed the
above challenges by using the learning to rank (LTR) frame-
work (8). Specifically, given a query protein, GOLabeler
first ranks a small number of promising candidate GO terms
that are predicted by its component methods and then re-
turns the top-ranked GO terms as the prediction results.
As a sequence-based method, GOLabeler uses informa-
tion about sequence homology and protein domain/family
that is derived from protein sequences by BLAST and In-
terProScan (9,10), respectively. By considering the impor-
tance of biological network information, NetGO (11) fur-
ther integrates additional massive network information in
STRING (12) under the same LTR framework of GOLa-
beler, resulting in the improved performance of AFP in
both BPO and CCO. However, human-annotated litera-
ture information about proteins is still largely ignored in
NetGO, which is actually an important resource for AFP
in our previous work, DeepText2GO (13). In addition, la-
tent sequence information extracted by deep learning based
methods has demonstrated the benefits of improving per-

formance in CCO (14), whereas NetGO relies on traditional
machine learning based methods.

Under the same LTR framework of NetGO, in this work,
we propose NetGO 2.0, which further incorporates both
manually annotated literature information about each pro-
tein in SwissProt (3) by logistic regression and latent se-
quence information by recurrent neural network (RNN).
Note that out of all 564 000 proteins in SwissProt, around
457 000 have manually annotated MEDLINE literature in-
formation, with only around 71 500 having experimental
GO annotations. The training and test datasets were gen-
erated by following the protocol of CAFA. Our predic-
tion results have shown that NetGO 2.0 performed signifi-
cantly better than NetGO in two domains of GO: BPO and
CCO, with a 12.6% improvement of AUPR in BPO, and
around 2.6% of Fya.x in CCO over NetGO. These results
demonstrate the benefits of incorporating text and deep se-
quence information for the functional annotation of BPO
and CCO. NetGO 2.0 has also participated in CAFA4. The
preliminary results of CAFA4 reported in ISMB2020 (July
2020) show that NetGO 2.0 was ranked among the top
methods.

NETGO 2.0: NEW FEATURES AND UPDATES
Overview

Figure 1 illustrates the systematic procedure of NetGO
2.0, which is similar to NetGO. As shown in the fig-
ure, the detailed processes of training and testing are
described in NetGO (11). NetGO 2.0 consists of seven
component methods: Naive, BLAST-KNN, LR-3mer, LR-
InterPro, NetKNN, LR-Text and Seq-RNN. The first
five component methods are all from NetGO, which use
GO frequency, sequence homology, amino acid trigram,
domain/family/motif and protein network information,
respectively. Note that one component of NetGO, LR-
ProFET, is absent in NetGO 2.0. It has very little effect on
the overall performance. Without it, NetGO 2.0 has also im-
proved its efficiency. Compared with NetGO, LR-Text and
Seq-RNN are two newly added components of NetGO 2.0.
Therefore, we describe them in the next subsection. Note
that LR stands for Logistic Regression and KNN for K-
nearest neighbors.

New components of NetGO 2.0

LR-text. Figure 2 illustrates the procedure of LR-Text,
which is a component of our previous work DeepText2GO
(13). For a given protein and its UniProt ID, we first ob-
tain the corresponding text data from PubMed by issuing a
query for the relevant publications manually annotated in
SwissProt (3). Specifically, we use only the title and abstract
of each returned article and combine all of them to form a
document. For this document, we then combine its sparse
TF-IDF (term frequency-inverse document frequency) rep-
resentation and dense semantic representation generated by
Doc2Vec (15) as the text feature of this queried protein. The
reasons for this are as follows. TF-IDF preserves the word
statistics while Doc2Vec captures the complex context in-
formation from the text data. As such, these two represen-
tations are complementary to each other, with focusing on
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Figure 1. The framework of NetGO 2.0 with seven steps. The top five component methods are from NetGO, while LR-Text relies on text information and
Seq-RNN using RNN to extract sequence information. An offline training process consists of Steps | — 3 — 4 — 5, while an online test process involves

Steps2 - 3 —> 6 — 7.

different aspects of text information. For each GO term, an
independent logistic regression is finally trained with the ob-
tained text-based features of proteins in the training set for
predicting the score of this GO term.

Seq-RNN. Except for LR-Text, we also use Seq-RNN to
extract the deep representation of a protein sequence. The
overview of Seq-RNN is shown in Figure 3. For a given pro-
tein sequence, Seq-RNN first represents each amino acid by
a semantic dense embedding. Such an embedding is then in-
putinto a BILSTM (Bi-directional Long Short-Term Mem-
ory) (16) network to generate its hidden representations.
By doing so, the representations contain context informa-
tion from two directions. This is because BILSTM captures
the dependency relationships between different protein se-
quences. Finally, a max-pooling layer generates the over-
all representation of this particular protein sequence. With
such a representation, Seq-RNN can predicts the probabil-
ity of each GO term by using a fully connected layer. We
use the binary cross-entropy as our objective function dur-
ing the training process.

New user interface

We redesigned the user interface of NetGO 2.0 to make it
more user-friendly. On the ‘Server’ page, we allow users to
run both NetGO and NetGO 2.0, which allows users to

make comparisons. It should be noted that even if there is
no text information available for a query protein, NetGO
2.0 still outperforms NetGO slightly as a result of using
deep sequence representation generated by Seq-RNN. We
reported the performance of NetGO 2.0 on test proteins
with and without text information in the Supplementary
Tables S4 and S5. For reducing the processing time, the
PubMed citations annotated in SwissProt have been down-
loaded into our web server. Compared to NetGO, the run-
ning time of NetGO 2.0 is completely acceptable consider-
ing its performance improvement. For 1000 input proteins,
the results can be returned in approximately 1.5 h by NetGO
2.0, compared with about 73 min for NetGO. Supplemen-
tary Table S6 compares the mean running times of NetGO
and NetGO 2.0 for different numbers of input proteins.

On the ‘Result’ page, we also added the prediction scores
and ranks of Seq-RNN and LR-Text. As such, users can
further understand how much the new components of
NetGO 2.0 help and improve the performance of AFP
specifically for their queried proteins.

RESULTS
Benchmark datasets

The rules for constructing our datasets are the same as those
for CAFA1 (4), CAFA2 (5) and CAFA3 (6). We collected
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Figure 2. The procedure of LR-Text: the relevant publications of a given protein are first retrieved. Then, the publications are represented as TF-IDF and

Doc2Vec. This new representation of the text is used for training of LR-Text.

Predicted Probability J 1 CJ1 C1---[1

Max-Pooling
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Figure 3. The procedure of Seq-RNN: The embedding layer first embeds
an amino acid into a dense vector, BILSTM then generates the hidden rep-
resentation by capturing the context information of amino acids, and the
max-pooling layer finally produces the overall representation.

protein sequences from UniProt (17) and obtained exper-
imental annotations from SwissProt (3), GOA (http://http:
/Iwww.ebi.ac.uk/GOA) (18) and GO(http://geneontology.
org/page/download-annotations) (2). For PPI network in-
formation, we used STRING (12) version 11.0, which con-
tains 3 123 056 667 protein interactions from 5090 organ-
isms. Moreover, we searched for the relevant citations of
a protein in MEDLINE, according to the procedure men-
tioned before. There are 175 610 documents in our training
dataset.

Similarly, NetGO 2.0 makes predictions using three
datasets.

1. Training: training for components
All data annotated in December 2018 or before.

2. LTR: training for LTR
no-knowledge and limited-knowledge proteins experi-
mentally annotated from January 2019 to January 2020
and not before January 2019.

3. Testing: testing for competing methods
All proteins experimentally annotated between February
2020 and October 2020 and not before February 2020.

All  the datasets are available at  https:
/ldrive.google.com/drive/folders/1wSS-
R335UcNMToMskx3dE4XcTaLvCAOc. The Supple-
mentary Table SI reports the numbers of proteins in the
above datasets.

Performance evaluation metrics

To evaluate the prediction results, we use AUPR (area un-
der the precision-recall curve) and Fi,,x as two main evalu-
ation metrics. AUPR and Fy,,x are widely used for datasets
with unbalanced distributions and multi-label classifica-
tion. AUPR punishes false positive prediction, which is suit-
able for highly imbalanced data. Fi,,x is an official metric
of CAFA. The definitions are given in the Supplementary
Data.

For testing, given an input of protein sequences, all com-
ponents in NetGO 2.0 compute their pair scores of proteins
and candidate GO terms. With these scores, the LTR model
produces an output list of GO terms in relative order. The
Fnax and AUPR scores on GO labels in three domains are
then generated.

Validation results

Table 1 reports the test results for NetGO 2.0 and its com-
pared methods. The methods with achieving the best perfor-
mance are highlighted in bold. The seven component meth-
ods of NetGO 2.0 are shown in the upper part of the table. It
is worth to point out that the overall absolute metric scores
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Table 1. Performance comparisons of NetGO 2.0 with its component and competing methods against testing data

F-max AUPR Coverage

MFO BPO CCO MFO BPO CCO MFO BPO CCO
Naive 0.416 0.256 0.542 0.276 0.118 0.464 1.00 1.00 1.00
Blast-KNN 0.632 0.312 0.566 0.542 0.132 0.405 0.91 0.88 0.81
LR-3mer 0.427 0.258 0.552 0.317 0.125 0.478 1.00 1.00 1.00
LR-InterPro 0.651 0.325 0.641 0.623 0.166 0.587 1.00 1.00 1.00
Net-KNN 0.519 0.325 0.596 0.416 0.192 0.528 0.99 0.99 0.98
RNN 0.524 0.265 0.574 0.424 0.124 0.477 1.00 1.00 1.00
LR-Text 0.464 0.248 0.479 0.353 0.154 0.403 0.72 0.46 0.66
DeepGOPlus 0.620 0.305 0.620 0.521 0.115 0.493 1.00 1.00 1.00
GOLabeler 0.667 0.326 0.631 0.647 0.193 0.557 1.00 1.00 1.00
NetGO 0.674 0.362 0.646 0.653 0.239 0.583 1.00 1.00 1.00
NetGO 2.0 0.666 0.366 0.663 0.655 0.269 0.593 1.00 1.00 1.00

Table 2. Comparisons of NetGO 2.0 with recent web servers in AFP

Maximum number of

Web Server Feature/Component Consensus approach sequences in one job
COFACTOR (19) Protein structure; Sequence; Protein—protein Consensus function 1
interaction (PPI) networks;
INGA 2.0 (20) Homology; Domain architectures; PPI networks; Consensus function 10
DeepGOPlus (14) Sequence and motif-based function information; Weighted sum 10
GOLabeler (7) GO term frequency; Sequence-based information; Learning to rank (LTR) 1000
NetGO (11) GO term frequency; Sequence-based information; LTR 1000
PPI networks
NetGO 2.0 GO term frequency; Sequence-based information; LTR 1000

PPI networks; Deep pattern in sequence; Related

literature;

of an AFP method may vary largely between NetGO and
NetGO 2.0 for different test datasets. However, the relative
performance of its different component models is stable. As
an example, we can see that LR-InterPro performed best in
all three branches of GO, Net-KNN was good at BPO and
CCO, and BLAST-KNN was good at MFO in both NetGO
and NetGO 2.0. On the other hand, a single Seq-RNN or
LR-Text method did not perform well compared with Blast-
KNN, LR-InterPro and Net-KNN. However, with different
techniques and information sources, they become different
when integrated with NetGO 2.0.

In the lower part, NetGO 2.0 is compared with NetGO
and a state-of-the-art deep learning based method, Deep-
GOPlus, which is a hybrid of the sequence homology based
method DIAMOND and a deep learning component Deep-
GOCNN (14). We can see that NetGO 2.0 significantly out-
performed all the compared methods in BPO and CCO.
This demonstrates that BPO and CCO predictions can ben-
efit from both deep sequence representation and text infor-
mation. Note that, although NetGO shows a better per-
formance in Fp,x over MFO, NetGO 2.0 still did best in
AUPR over MFO. This may be because MFO terms are
related more to sequence homology and domain/family in-
formation, from which our new components benefit less. As
a whole, NetGO 2.0 achieved a 12.6% improvement over
NetGO in terms of AUPR in BPO and around 2.6% in
terms of Fi,.x in CCO. Finally, the superiority of NetGO 2.0
was further validated by 100 bootstrapped datasets with a
paired z-test (P-values < 0.05 for all cases except for MFO.
See Supplementary Data for details). As a result, NetGO
2.0 achieved first place in the preliminary results of CAFA4
for most cases in terms of MFO, BPO and CCO. We also re-

ported performance comparisons on testing data in terms of
Smin and with the P-values separately in the Supplementary
Tables S2 and S3.

THE NETGO WEB SERVER
Comparisons with recent AFP Web servers

In recent years, many research teams have launched web-
sites that are open to the public for protein function predic-
tion, such as COFACTOR (19), INGA 2.0 (20), DeepGO-
Plus (14), GOLabler (7) and NetGO (11). As shown in Table
2, we compare NetGO 2.0 with websites that have emerged
in the last few years from three aspects: (i) the types of in-
formation used. All these web servers for AFP use protein
sequence information, and some of them use PPI network
information. Note that NetGO 2.0 is the only web server
that makes use of literature information. (ii) The approach
used for integration. Both COFACTOR and INGA 2.0 use
a popular consensus function to integrate the prediction
scores of different component methods with the assumption
of their Independence. On the other hand, DeepGOPlus
uses a weighted sum to combine the prediction scores of se-
quence homology and sequence based deep learning meth-
ods. In contrast, GOLabeler, NetGO and NetGO 2.0 rely
on an advanced machine learning technique, LTR, to effec-
tively integrate the prediction results from different com-
ponents. (iii) The maximum number of sequences allowed
in one job. COFACTOR accepts only one protein sequence
in each job, which may be related to its high consumption
of computing resources for predicting and handling pro-
tein structure information. DeepGOPIlus and INGA 2.0 can
accept up to 10 protein sequences in one job. In contrast,
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Figure 4. A comparison of prediction results for the CAAT box DNA-binding protein NFYB-1 (Uniprot:017286) over BPO between NetGO and NetGO
2.0. We only show the GO terms in top three levels of BPO, which are associated with top 20 GO terms by NetGO and NetGO 2.0, respectively. The GO
terms with prediction scores higher than 0.6 are shown with colors ([1.0, 0.9), [0.9, 0.8), [0.8, 0.7), [0.7, 0.6), [0.6, 0.0]).

NetGO 2.0 is so powerful that it can handle up to 1000 in-
put protein sequences.

Case study

The CAAT box DNA-binding protein NFYB-1 (Uniprot
ID: O17286) is a nuclear transcription factor subunit in
Caenorhabditis elegans. Given its source information, the
previous version of NetGO predicts that GO term anatom-
ical structure development (GO:0048856) ranks 23rd in

the BPO ordering list (http://issubmission.sjtu.edu.cn/ng2/
result/1615431733), while in the NetGO 2.0 results, the GO
term ranks 19th (http://issubmission.sjtu.edu.cn/ng2/result/
1615403345). In more detail, the candidate GO term ranks
64th, 55th, 7th and 6th in the results of BLAST-KNN, LR-
InterPro, NetKNN and LR-Text, respectively. From this,
we can see that NetGO 2.0, incorporating literature infor-
mation, performs better for the target protein. Specifically,
this GO term describes the development of the anatomical
structure. The literature (PMID:23933492) associated with
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protein NFYB-1 shows T-box gene expression plays an es-
sential role in the development of pharyngeal precursors
and body wall muscles (21). Therefore, our NetGO 2.0 uti-
lizes this literature information to build a stronger correla-
tion between protein NFYB-1 and the GO term as shown in
Figure 4. Supplementary Table S7 shows the ground truth
GO terms in BPO of target protein 017286, as well as top
20 predictions of NetGO and NetGO 2.0.

CONCLUSION

In this paper, we have presented NetGO 2.0, a web server for
large scale protein function prediction by using massive se-
quence, text, domain/family and network information. By
using additional protein text annotation and deep sequence
representations in its new component methods, NetGO 2.0
outperformed its predecessor, NetGO, especially in BPO
and CCO. The superior performance of NetGO 2.0 shows
that (i) the use of additional information is helpful for AFP;
(i1) neural networks can further extract high order informa-
tion hidden in the sequence and (iii) the LTR framework
can integrate new information and methods well.

The upgraded NetGO 2.0 web server still maintains its
high performance and stability. It will provide more benefits
to biomedical practitioners.
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