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Abstract

One of the main problems with the joint use of multiple drugs is that it may cause adverse drug interactions and side effects
that damage the body. Therefore, it is important to predict potential drug interactions. However, most of the available
prediction methods can only predict whether two drugs interact or not, whereas few methods can predict interaction events
between two drugs. Accurately predicting interaction events of two drugs is more useful for researchers to study the
mechanism of the interaction of two drugs. In the present study, we propose a novel method, MDF-SA-DDI, which predicts
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drug–drug interaction (DDI) events based on multi-source drug fusion, multi-source feature fusion and transformer
self-attention mechanism. MDF-SA-DDI is mainly composed of two parts: multi-source drug fusion and multi-source
feature fusion. First, we combine two drugs in four different ways and input the combined drug feature representation into
four different drug fusion networks (Siamese network, convolutional neural network and two auto-encoders) to obtain the
latent feature vectors of the drug pairs, in which the two auto-encoders have the same structure, and their main difference
is the number of neurons in the input layer of the two auto-encoders. Then, we use transformer blocks that include
self-attention mechanism to perform latent feature fusion. We conducted experiments on three different tasks with two
datasets. On the small dataset, the area under the precision–recall-curve (AUPR) and F1 scores of our method on task 1
reached 0.9737 and 0.8878, respectively, which were better than the state-of-the-art method. On the large dataset, the AUPR
and F1 scores of our method on task 1 reached 0.9773 and 0.9117, respectively. In task 2 and task 3 of two datasets, our
method also achieved the same or better performance as the state-of-the-art method. More importantly, the case studies on
five DDI events are conducted and achieved satisfactory performance. The source codes and data are available at https://gi
thub.com/ShenggengLin/MDF-SA-DDI.

Key words: drug–drug interaction; multi-source drug fusion; multi-source feature fusion; self-attention mechanism

Introduction
Most human diseases are caused by complex biological pro-
cesses and are resistant to the activity of any single drug [1].
Combination drug therapy is becoming a promising approach
because it can improve drug efficacy and reduce drug resistance
[2]. However, some drugs may interact with other drugs when
they are taken together, and unexpected drug–drug interactions
(DDIs) happened, which may lead to adverse drug events [3].
In order to avoid such events, it is highly desirable to identify
potential DDIs. In addition, antibody-dependent enhancements
caused by critical DDIs have led to the withdrawal of drugs from
the market. Therefore, accurate prediction of DDIs is important
for safer and improved prescription to patients [2].

Vitro experiments and clinical trials can be performed to
identify DDIs, but systematic combinatorial screening of poten-
tial DDI remains challenging and expensive [1]. The compu-
tational methods are widely developed for prediction of DDIs
due to their advantages such as high efficiency. These methods
are roughly classified into six categories: (1) machine learning-
based; (2) deep learning-based; (3) matrix factorization-based; (4)
network diffusion-based; (5) ensemble learning-based methods
and (6) literature-based or text mining methods.

In the last decade, a large number of machine learning-based
models have been developed for prediction of DDIs [4–10]. For
example, Kastrin et al. [7] considered topological and semantic
features similarities, and used five classifiers to predict drug–
drug interactions. Qian et al. [5] used feature similarity and
feature selection methods to build a gradient boosting classifier
to speed up the process and achieve robust prediction perfor-
mance. Gottlieb et al. [8] calculated seven types of similarities
and combined the two best similarities of each drug pair to
generate a feature. Cami et al. [9] used standard multivariate
methods to combine multiple predictors to make DDI predic-
tions. The authors constructed a DDI network and obtained
multiple covariates from the network to construct a logistic
regression model and generalize linear mixed models. Cheng
et al. [10] extracted features from simplified molecular-input
line-entry system data and side effect similarities of drug pairs,
and applied support vector machines (SVMs) to predict DDIs.

Deep learning-based models mainly include deep neural
networks (DNN)-based models, graph embedding-based models
and knowledge graph embedding-based models [1, 11–23].
Rohani et al. [23] calculated multiple drug similarities and
Gaussian interaction curves of drug pairs, and applied the
method to select the most informative and less redundant

similarities as features. Then, the feature vectors of drug pairs
were taken as input of the neural network for prediction. Zitnick
et al. [1] proposed a method for predicting the side effects of
drugs. This method regards DDI prediction as a multi-relational
link prediction problem on a multi-modal graph, including
the relationship between drugs, proteins and side effects. The
authors used a graph convolutional network (GCN) as an encoder
to generate embeddings for nodes on the graph, and a tensor
decomposition model as a decoder to predict DDI. In addition,
this work extended GCN to graphs with multiple node types and
multiple edge types.

The DDI prediction task can be represented as a matrix com-
pletion task, which aims to predict unobserved interactions. Typ-
ical matrix factorization methods include non-negative matrix
factorization, singular value decomposition and so on. Besides,
some methods develop novel matrix factorization models based
on manifold learning algorithms, artificial neural networks and
so on [3, 24–31]. Zhu et al. [24] designed a dependent network to
model the drug dependency and propose an attribute supervised
learning model probabilistic dependent matrix tri-factorization
(PDMTF) for ADDI prediction. Yu et al. [30] developed a novel
method called DDINMF, which is based on the semi-nonnegative
matrix factorization. Zhang et al. [31] proposed a manifold regu-
larized matrix factorization method for DDI prediction.

The network diffusion-based methods can infer novel DDIs
through a constructed network [3, 32–40]. Zhang et al. [37] con-
structed a network based on the structural and side effect sim-
ilarities of drugs, and applied a label propagation algorithm
to identify DDIs [37]. Park et al. [38] applied the random walk
with restart on the protein–protein network to predict DDIs.
Sridhar et al. [39] proposed a probabilistic approach to infer DDIs
from the network, which is constructed based on multiple drug–
drug similarities and known interactions [39]. Nyamabo et al.
[40] proposed a deep learning framework, which performs the
DDI prediction task between two drugs by identifying pairwise
interactions between their respective substructures.

The ensemble learning-based methods reasonably combine
several models to achieve better performance than individual
models [3, 41–43]. Cheng et al. [10] proposed a heterogeneous
network-assisted inference framework to assist with the
prediction of DDIs, which applied five predictive models: naive
Bayes, decision tree, k-nearest neighbor, logistic regression
and SVM. Deepika and Geetha [42] adopted a semi-supervised
learning framework with network representation learning and
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meta-learning from four drug datasets to predict DDIs. Chen
et al. [43] proposed a multi-scale feature fusion deep learning
model named MUFFIN, which can learn the drug representation
from the drug structure and the knowledge graph with rich
bio-medical information.

The literature-based or text mining methods can integrate
multiple information sources, use domain knowledge and
clinical evidence, and improve the computational model with
more external knowledge, thereby improving the prediction
performance and interpretability [6, 44–49]. Liu et al. [44]
proposed a machine learning framework to extract useful
features from the FDA adverse event reports and then identify
potential high-priority DDIs using an autoencoder-based semi-
supervised learning algorithm. Asada et al. [45] proposed a novel
method to effectively utilize external drug database information
as well as information from large-scale plain text for DDI
extraction. They focused on drug description and molecular
structure information as the drug database information. Zhao
et al. [49] presented a syntax convolutional neural network (CNN)
based DDI extraction method and obtained better performance
than other state-of-the-art methods.

Generally, most state-of-the-art works mentioned above only
predict whether there exists a DDI or not between a pair of drugs,
which is formulated as a binary classification task. However,
these methods do not provide sufficient details on DDIs in terms
of pharmacological effects, which could suggest potential causal
mechanisms on the DDI occurrence of drug pairs [50]. In this
study, DDIs are subsequently represented by various events, and
predicting these events can be regarded as a multi-class classifi-
cation task. Predicting DDI-associated events is a meaningful but
challenging task, and has received increasing interests recently
[3, 43]. Ryu et al. [50] proposed a computational framework Deep-
DDI that uses names of drug–drug pairs and their structural
information as inputs to accurately generate 86 important DDI
types as outputs that are human-readable sentences. Lee et al.
[2] used auto-encoders and a deep feed-forward network that are
trained by using the structural similarity profiles, gene ontology
term similarity profiles, and target gene similarity profiles of
known drug pairs to predict pharmacological effects of DDIs.
Deng et al. [3] proposed a multimodal deep learning frame-
work named DDIMDL that combines diverse drug features for
predicting DDI-associated events.

In addition to the models mentioned above, some machine
learning methods that can be used for multi-classification tasks,
such as k-nearest neighbor (KNN) [51], naive Bayes (NB) [52],
SVM [51] and logistic regression (LR) [53], which can be used to
predict DDI events. KNN is a simple and effective classifier. NB
has a solid theoretical foundation for multi-classification. SVM
generally perform well in small sample datasets, and LR has
good interpretability. Some ensemble learning models can also
be used to predict DDI events, such as Random Forest (RF) [51],
Gradient Boosting Decision Tree (GBDT) [54] and eXtreme Gra-
dient Boosting(XGBoost) [55]. These ensemble learning classifier
combines multiple weak decision trees to obtain better and more
comprehensive strong classifier. Some of models mentioned
above are used as baseline methods in the paper.

It should be emphasized that there are multi-classification
and multi-label classification in machine learning [56]. Multi-
classification means that there is only one label to be predicted,
but the value of the label may have multiple situations, that
is, there are k possible categories for each sample (k ≥ 3). But
in a multi-label classification task, a sample may have multi-
ple labels. Each label may have two or more categories. Com-
mon multi-label classification algorithms include ML-KNN [57],

Rank-SVM [58], NLSP [59] and so on. Predicting DDI-associated
events is a multi-class classification task.

Although methods mentioned above achieve satisfactory
results, they still have some limitations. Firstly, most of these
models based on deep learning techniques concatenate two
drug vectors together to predict DDIs or DDI events without
trying other ways to fuse the information of drug pairs, such
as summation or latent feature fusion via Siamese network.
Secondly, most of methods have performed well in predicting
unobserved interactions between known drugs. However, they
are hard to predict unobserved interactions between new drugs.

To overcome these limitations, we propose a novel method,
MDF-SA-DDI, which predicts DDI events based on multi-source
drug fusion, multi-source feature fusion and transformer self-
attention mechanism. MDF-SA-DDI (Figure 1) is mainly com-
posed of two parts: multi-source drug fusion and multi-source
feature fusion, specifically, multi-source features are fused via
transformer self-attention mechanism. First, we combine two
drugs in four different ways and input the combined drug feature
representation into four different drug fusion networks to obtain
the latent feature vectors of the drug pairs. Specifically, we
present a drug as a k-dimensional vector. (i) The first combi-
nation method is to input features of two drugs into a Siamese
network (the first drug fusion network, SN), which is two auto-
encoders that can share parameters. Two latent vectors of the
Siamese neural network are used as new features of a drug pair.
(ii) The second combination method is to combine two drug
features into a 2∗k-dimensional feature vector, and then input
the 2∗k-dimensional feature vector into the CNN (the second
drug fusion network, CN). The output of CNN is used as the
latent vector of the drug pair. (iii) The third combination method
is to concatenate the feature vectors of two drugs to obtain
a 1∗2 k-dimensional feature vector, and then input the 1∗2 k-
dimensional feature vector to a larger single auto-encoder (the
third drug fusion network, AE1). The latent vector of the auto-
encoder is used as the new feature of the drug pair. (iv) The
fourth combination method is to element-wise add the feature
vectors of two drugs to obtain a 1∗k-dimensional feature vector,
and then input the 1∗k-dimensional feature vector to the single
auto-encoder (the fourth drug fusion network, AE2). The latent
vector of the auto-encoder is used as the new feature of the
drug pair. Then, we use several transformer blocks which include
self-attention mechanism to perform feature fusion, which is
the fusion of new features from different drug pairs. Finally, the
obtained fusion features are fed into the fully connected layer to
predict drug interaction events.

The experimental results show that our proposed MDF-SA-
DDI method achieves better performance than several classic
machine learning algorithms and state-of-the-art methods on
all three tasks in two different datasets in the DDI events pre-
diction problem. In addition, this study also proved the effec-
tiveness of multi-source drug fusion. More importantly, we also
conducted case studies, which prove the effectiveness of our
method in practice.

Materials and Methods
Datasets

In this study, we use two datasets. The first data set (Dataset1)
is the public dataset that Deng et al. [3] collected from Drug-
Bank. Dataset1 contains 572 drugs with 74 528 pairwise DDIs,
which are associated with 65 types of events. Each drug has
four types of features: chemical substructures, targets, pathways
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Figure 1. The workflow of the proposed MDF-SA-DDI method.

Table 1. Summary of the Dataset1’ information and Dataset2’s information

Dataset Drug number DDI number DDI events number

Dataset1 572 74,528 65
Dataset2 1258 323,539 100

and enzymes. According to Deng et al.’s [3] experiment, the
combination of substructures, targets and enzymes performs
best in all combinations of features. Therefore, we construct the
second dataset by collecting DDIs and drugs with three features:
chemical substructures, targets and enzymes from DrugBank.
We remove the rare events and select the events which have
more than fifty DDIs. Thus, we obtain 1258 drugs with 323 539
pairwise DDIs, which are associated with 100 types of events
(Dataset2). The dataset collection and processing methods have
been described in detail in previous studies [3]. The detailed
information of the two datasets is shown in Table 1.

The number of drugs in Dataset2 is more than twice the
number of drugs in Dataset1. The number of DDI events in
Dataset2 is more than four times that in Dataset1. And the types
of DDI events in Dataset2 are also richer than those in Dataset1.
Therefore, Dataset2 contains more DDI event information than
Dataset1. More data in Dataset2 can help the model train better,
but more DDI event types in Dataset2 also make it more difficult
for the model to fit the data. In general, Dataset1 can measure
the performance of the model on a small dataset, and Dataset2

can measure the performance of the model on a large and
diverse dataset.

Drug feature extraction

Feature extraction and representation are essential for model
construction. According to the previous study [3], the combi-
nation of chemical substructures, targets, and enzymes can
achieve the best performance. Therefore, the MDF-SA-DDI model
in the following experiments is constructed with three features:
substructures, targets and enzymes. Each feature corresponds
to a set of descriptors, so one drug can be represented by a
binary feature vector, and its value (1 or 0) indicates the pres-
ence or absence of the corresponding element. However, these
feature vectors have high dimensionality, most of which are 0.
High dimensionality input may cost too much computational
resources and may induce the phenomenon of the curse of
dimensionality, which can lead to extremely inferior perfor-
mance for some models. Therefore, based on the assumption
that similar drugs may interact with the same drugs, we do not
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use bit vectors as input, but use the Jaccard similarity calculated
from bit vector. Jaccard similarity is calculated by the following
equation.

Jaccard (A, B) = | A ∩ B |
| A ∪ B | = | A ∩ B |

| A | + | B | − | A ∩ B |

where A and B are original bit vectors of two drugs; | A ∩ B |
is the intersection of A and B; | A ∪ B | is the union. Based on
the drug–drug jaccard similarity, in Dataset1, each drug feature is
represented as a corresponding 572-dimensional vector. There-
fore, each drug with three features is represented by a 3∗572-
dimentional vector. In the same way, each drug is represented
as a corresponding 3∗1258-dimensional vector in Dataset2.

Multi-source drug fusion

In the multi-source drug fusion module, we use CNNs, auto-
encoders with self-attention mechanism and Siamese network
to perform drug fusion. The multi-source drug fusion can pro-
vide deep learning models with diverse information from differ-
ent views to accurately predict DDI events, compared with only
one way to fuse the information of one drug pair. Next, we will
describe them in detail.

Convolutional neural networks

CNN has achieved satisfactory performance in the field of com-
puter vision since it focuses on local information. In addition,
parameter sharing of CNN can save a lot of computational
resources compared with fully connected layers, and its nature
of translation invariance can focus on extracting location-
insensitive information of descriptors. In our model, each drug is
represented as a 1∗k-dimensional vector. We combine two drug
vectors into a 2∗k-dimensional matrix and input it into the CNN.
The size of the convolution kernel is 2∗p. Therefore, the CNN will
output a row vector as the latent vector of the drug pair. Then
input this latent vector into the 1-dimensional CNN to get the
final latent vector of the drug pair.

Auto-encoders with self-attention mechanism

Auto-encoder is an unsupervised neural network model, which
includes two parts: encoder and decoder. It can learn the hidden
features from the input data. Since the input includes three
feature similarities, and the dimensionality of the input is high,
it is necessary to reduce the dimensionality of input features.
Auto-encoder is a decent method to reduce the dimensionality
and fuse three features together. In addition, with the help of
auto-encoder outputs, an auxiliary loss can be used as a kind
of deep learning network regularization method to improve the
final performance.

The self-attention mechanism is a variant of the attention
mechanism, which reduces the dependence on external infor-
mation and is better at capturing the internal correlation of data
or features. What’s more, the self-attention mechanism can pay
more attention to important features. Therefore, we add a self-
attention layer before the output layer of the encoder in the
auto-encoder.

In our model, we concatenate two drugs into a 1∗2 k-
dimensional vector and input it into an auto-encoder with
a self-attention mechanism (named AE1). In addition, the
1∗k-dimensional vector obtained by element-wise adding two

drug vectors is fed into another auto-encoder with a self-
attention mechanism (named AE2). The latent vectors of two
auto-encoders are used as the latent vectors of the drug pair.

Siamese network

The Siamese network [60] reduces the parameters of the neural
network by sharing weights. It is often used to measure the sim-
ilarity of two inputs. The applications of the Siamese network in
object tracking and semantic similarity analysis have achieved
satisfactory performance. In our model, we use another two
auto-encoders with self-attention mechanism as sub-networks
of the Siamese network. Two drugs are fed into the Siamese
network respectively, and two latent vectors of the Siamese
network are used as the latent vectors of the drug pair. Because
the parameters of the two sub-networks are shared, so latent
features can contain information of drug pairs. Siamese auto-
encoder network can extract information from a single drug
rather than a drug pair, and this network extracts drug-level
features, instead of drug-pair-level features. In addition, this
network can reduce the difference between two different drug
input orders. In another word, the input with Drug A first and
Drug B last is same as the input with Drug B first and Drug A
last in this siamese network. However, the input with Drug A
first and the input with Drug B first perform different in other
components, such as a single auto-encoder and CNN.

Latent feature fusion

We use the encoder structure of the transformer [61] to per-
form latent feature fusion. Through four different drug fusion
methods and network structures, we can obtain four different
latent vectors of drug pairs. Then, we element-wise add these
four latent vectors to get the fifth hidden vector. Finally, we
concatenate these five hidden vectors as the new feature of the
drug pair, and input this new feature into the encoder structure
of the transformer (Figure 1). The transformer’s encoder mainly
includes self-attention layer, layer normalization, residual con-
nections and feed-forward layer.

Multi-head attention mechanism

After obtaining the latent feature vectors of different drug com-
binations, we use the multi-head self-attention mechanism to
perform feature fusion. Self-attention mechanism is a suitable
method for features fusion [62]. Since some extracted features
are redundant or less important, Transformer blocks with self-
attention mechanism can help the network select important fea-
tures [62], and give these important features with high weights
for DDI events prediction.

Different latent feature vectors have inconsistent contribu-
tions to the prediction of drug interaction events. Therefore, we
concatenate different latent vectors together and input them
to the multi-head attention module, which is also called the
transformer block, and use the self-attention mechanism to
learn the weight distribution of different features. In another
word, self-attention mechanism can help us to recognize which
features are important for prediction. The multi-head attention
is calculated by following formulas.

XMH_attn = Concat
(
head1, head2, . . . , headm

)
Wo

Headi = softmax

(
Qi × KT

i√
dk

)
Vi.
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Qi = X × WQ
i

Ki = X × WK
i

Vi = X × WV
i

X = Concat (LF1, LF2, LF3, LF4, LF5)

where LF1, LF2, LF3, LF4, LF5 are the latent feature vectors of
different drug combinations, and X is the latent vector obtained
by concatenating LF1, LF2, LF3, LF4 and LF5. WQ

i ∈ Rdin×dQ , WK
i ∈

Rdin×dK , WV
i ∈ Rdin×dV are the parameter matrices. Qi, Ki and Vi are

the Q (Query), K (Key) and V (Value) matrices derived from the
linear transformation of X, respectively.

Residual connections & layer normalization

Residual connection [63] can partially solve the problem of gra-
dient disappearance, which can help the neural network design
deeper. This is done by adding the output of the current layer
and the output of the previous layer.

Layer normalization [64] was used in two occasions: after the
self-attention layer and after the feed-forward network layer,
with the goal to ameliorate the ‘covariate-shift’ problem by re-
standardizing the computed vector representations. It can also
accelerate the convergence of neural network parameters.

Data augmentation

Data augmentation is to help networks learn more represen-
tations from the original data without substantially increasing
the data size, because it improves the quantity of the original
data. In deep learning theory, training neural network with more
data is likely to achieve better performance. Mixup [65] is a data
augmentation algorithm, which obtains new training data by
mixing different samples of data. It can be used to improve the
generalization ability and robustness of the model. The mixup
algorithm is calculated by following formulas:

λ = Beta (α, β)

Mixed_batchx = λ × batchx1 + (1 − λ) × batchx2

Mixed_batchy = λ × batchy1 + (1 − λ) × batchy2

where batchx1 is a set of batch samples, batchy1 is a set of labels
corresponding to the batch samples. Shuffle the same batch
samples to get batchx2, and batchy2 is a set of labels correspond-
ing to batchx2. λ is the mixing coefficient calculated from the beta
distribution with the hyper-parameters α and β. Mixed_batchx is
a set of batch samples after mixup, and mixed_batchy is a set of
labels corresponding to the mixed_batchx.

Loss function

DDI events prediction is a multi-class classification problem,
and the sample size of each class is not balanced. Therefore,
we choose focal loss (FL) [66] as our classification loss function.
FL can solve problems of imbalance in sample size of each
category and difficulty of imbalanced classification. However,
due to the instability of FL during training, the neural network
needs to be trained by more epochs or even does not converge.
Therefore, we still choose the cross-entropy (CE) loss function
as our classification loss function in the first half training steps,
and choose FL as our classification loss function in the second
half training steps.

In our model, AE1, AE2 and Siamese network are all auto-
encoders, so we choose the mean squared error (MSE) loss
function as the loss function of the auto-encoder, which is the
auxiliary loss for the classification loss. In order to make the
model pay more attention to classification loss, we multiply
the classification cross entropy loss and focal loss by a corre-
sponding classification loss weight (clw). Therefore, the total loss
function of the model is as follows:

Loss =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

clw × lCE
(
y, y∼) + lMSE

(
x1, x∼

1

) + lMSE
(
x2, x∼

2

)
+ lMSE

(
x3, x∼

3

)
if epoch < epoch_num//2

clw × lFL
(
y, y∼) + lMSE

(
x1, x∼

1

) + lMSE
(
x2, x∼

2

)
+ lMSE

(
x3, x∼

3

)
if epoch ≥ epoch_num//2

where y is the class label of the sample, and y∼ is the predicted
value of the sample. x1 is the input of AE1, and x∼

1 is the output
of the AE1 decoder. x2 is the input of AE2, and x∼

2 is the output of
the AE2 decoder. x3 is the input of the Siamese network, and x∼

3

is the output of the Siamese network decoder.

Results and Discussion
Experimental settings and tasks

This study evaluated the DDI events prediction problem through
three experimental settings: (i) prediction of unobserved inter-
action events between known drugs (Task 1); (ii) prediction of
interaction events between known drugs and new drugs (Task
2) and (iii) prediction of interaction events between new drugs
(Task 3). New drug representations in the corresponding task are
missing in the training set, but exist in the test set.

For task 1, we apply 5-fold cross-validation (5-CV) to DDIs
and split all DDIs into five subsets. We train models based on
DDIs in the training set, and then make predictions for DDIs
in the test set. For task 2 and task 3, we apply 5-CV to drugs
instead of DDI pairs. We randomly split drugs into five subsets,
and used four of them as training drugs and the remaining as
test drugs. For task 2, prediction models are constructed on the
DDIs between two training drugs, and then make predictions
for DDI events between one training drug and one test drug. For
task 3, prediction models are constructed on the DDIs between
two training drugs, and then make predictions for DDI events
between two test drugs [3].

Our task is the multi-class classification work. For evaluation,
accuracy (ACC), area under the precision–recall-curve (AUPR),
area under the ROC curve (AUC), F1 score, precision and recall
are adopted as evaluation metrics [3]. In highly imbalanced
data, AUPR and F1 score metrics are more objective for model
evaluation. Therefore, in the following discussion, we will pay
more attention to these two metrics.

Hyper-parameter setting

The hyper-parameters could influence the performances of
MDF-SA-DDI. Therefore, we discuss six hyper-parameters on
task 1 of Dataset1: batch size (BS), classification loss weight
(CLW), hidden layer dimension of auto-encoders (HLD), self-
attention module layers (SML), learning rate (LRA) and training
epochs (TE). We use Gaussian error linear unit [67] activation
function and Radam optimizer [68]. The dropout layer and batch
normalization layer [69] are used between the fully connected
layers. The metric scores under different configurations are
shown in Figure 2.
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Figure 2. The metric scores under different hyper-parameters.

According to Figure 2, the performance of the model does not
change drastically as the hyper-parameters change. This also
illustrates the stability of our model. In the end, we chose 256
for batch size, 5 for classification loss weight, 500 for hidden layer
dimension of auto-encoders, 4 for the number of self-attention
module layers, 1e-5 for learning rate and 120 for training epoch.

For different tasks on different datasets, we fine-tuned the
hyper-parameters. In task 2 and task 3 of Dataset1, we found that
the loss of the test set can quickly converge but it is unstable after
convergence during training. We speculate that the learning rate
may be too large, so we reduced the learning rate in task 2 and
task 3. In addition, task 2 and task 3 are more difficult than
task 1. Therefore, in order to enhance the generalization ability
of the model, we have also increased hidden layer dimension
of auto-encoders. The size of Dataset2 is more than four times
larger than that of Dataset1. Therefore, in order to speed up
the training and make the training more stable, we increased
the batch size in Dataset2. A larger batch size often requires a
larger learning rate, so we also increase the learning rate. In order
to make the model fit the larger dataset better, we increased
hidden layer dimension of auto-encoders and training epochs.
On task 1 of Dataset1, we roughly determined the range of each
hyper-parameter. All hyper-parameter adjustments are based
on the hyper-parameters on task 1 of Dataset1. The specific
hyper-parameter settings are given in Supplementary Table S1.

Multi-source drug fusion improves DDI event prediction

In this section, we evaluated the influence of different drug
fusions on the DDI event prediction. To compare the perfor-
mance of only one kind of drug fusion and multiple versions
of drug fusion, we build several MDF-SA-DDI models and adopt
the metric scores of the models to assess the prediction power
of corresponding drug fusion or multi-source drug fusion. The
results of all prediction models are shown in Table 2.

Among all drug fusions, the element-wise summation of
feature vectors of two drugs (AE2) seems to be the most infor-
mative and achieves an AUPR of 0.9476. The model which is
the concatenating two drugs into a 1∗2 k-dimensional vector
(AE1) produces an AUPR of 0.9347, and the model which inputs
features of two drugs into the Siamese network (SN) produces
an AUPR of 0.9327. Combining two drug features into a 2∗k-
dimensional feature vector (CN) leads to the model with an AUPR

of 0.2104. The AUPR in this drug combination method is low,
and this is probably because 2∗k-dimensional feature vectors
are only suitable for 2D CNN to extract features. The combina-
tion of several different drug fusions provides the significant
improvement compared with only one single version of drug
fusions. The combination of CN and SN produces the best AUPR
(0.9712) among all combinations of two versions of drug fusion.
The combination of CN and AE2 produces the best F1 score
(0.8687) among all combinations of two versions of drug fusion.
The combination of CN, SN and AE1 produces the best AUPR
(0.9722) among all combinations of three versions of drug fusion.
The combination of CN, AE1 and AE2 produces the best F1 score
(0.8814) among all combinations of three versions of drug fusion.
The combination of CN, SN, AE1 and AE2 performs the best on
all evaluation metrics in all combinations of drug fusions.

As mentioned in Multi-source drug fusion section, multi-
source drug fusion can provide deep learning models with
diverse information from different views to accurately predict
DDI events, compared with only one way to fuse the information
of one drug pair. The autoencoder can learn the characteristics
of drug pairs in different combinations (element-wise addition
and concatenation). Siamese network can extract information
from a single drug rather than a drug pair, and this network
extracts drug-level features, instead of drug-pair-level features.
CNNs have powerful capabilities in local feature extraction. This
is why multi-source drug fusion can improve the prediction of
DDI events.

The effect of mixup data augmentation

In order to verify whether the mixup data augmentation algo-
rithm works in our model, we verified the effectiveness of the
mixup data augmentation algorithm in task 1, task 2 and task
3 of Dataset1. The specific approach for verification is to use
the mixup data augmentation algorithm and not to use the
mixup data augmentation algorithm on three different tasks.
The effectiveness of mixup is determined by comparing the
metric scores. The results of all prediction models are shown in
Table 3

In all three tasks, the F1 score of the model using mixup is
higher than that of the model without using mixup. The F1 score
of the model using mixup in task 1 is 0.0305 higher than that
without using mixup. The F1 score of the model using mixup in
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Table 2. The performance of MDF-SA-DDI with different drug fusions

ACC AUPR AUC F1 Precision Recall

CN 0.2630 0.2104 0.9346 0.0086 0.0080 0.0154
SN 0.8712 0.9327 0.9971 0.7138 0.7844 0.6863
AE1 0.8806 0.9347 0.9965 0.7705 0.7931 0.7747
AE2 0.8930 0.9476 0.9972 0.7808 0.8070 0.7803
CN + SN 0.9217 0.9712 0.9988 0.8489 0.8799 0.8332
CN + AE1 0.9161 0.9662 0.9987 0.8621 0.8849 0.8503
CN + AE2 0.9198 0.9661 0.9987 0.8687 0.9089 0.8482
SN + AE1 0.9162 0.9639 0.9983 0.8611 0.8818 0.8562
SN + AE2 0.9187 0.9636 0.9982 0.8657 0.8737 0.8659
AE1 + AE2 0.9138 0.9613 0.9982 0.8554 0.8757 0.8515
CN + SN + AE1 0.9263 0.9722 0.9988 0.8705 0.9008 0.8492
CN + SN + AE2 0.9241 0.9690 0.9987 0.8758 0.9052 0.8619
CN + AE1 + AE2 0.9242 0.9697 0.9989 0.8814 0.9033 0.8693
SN + AE1 + AE2 0.9248 0.9685 0.9986 0.8777 0.9042 0.8675
CN + SN + AE1 + AE2 0.9301 0.9737 0.9989 0.8878 0.9085 0.8760

Table 3. The performance of MDF-SA-DDI with/without mixup data augmentation

ACC AUPR AUC F1 Precision Recall

Task1_with_mixup 0.9301 0.9737 0.9989 0.8878 0.9085 0.8760
Task1_without_mixup 0.9315 0.9737 0.9982 0.8573 0.8907 0.8393
Task2_with_mixup 0.6633 0.6776 0.9497 0.5584 0.6547 0.5078
Task2_without_mixup 0.6507 0.6473 0.9367 0.5124 0.5140 0.5270
Task3_with_mixup 0.4338 0.3873 0.8630 0.2329 0.2715 0.2226
Task3_without_mixup 0.4239 0.3249 0.8373 0.2071 0.1970 0.2329

task 2 is 0.0460 higher than that without using mixup. The F1
score of the model using mixup in task 3 is 0.0258 higher than
that without using mixup. The AUPR of the model using mixup in
task 2 and task 3 is higher than that of the model without using
mixup. In task 1, the AUPR of the model using mixup is equal to
that of the model without using mixup.

In general, by using the mixup data enhancement algorithm,
the performance of the model has been improved on task 1, task
2 and task 3. The performance of the model on task 2 and task
3 is improved more obviously. This may be due to the distinct
training/testing data splitting methods in task 2 and task 3.
The test sets of task 2 and task 3 contain drugs that have not
appeared in the training sets, so the sample distribution of the
test sets and the distribution of the training sets have a greater
difference than that of task 1. The mixup data enhancement
algorithm can improve the generalization ability of the model
by mixing data samples between different categories. This may
be the reason why the mixup data enhancement algorithm
performs better on task 2 and task 3.

Comparison with other methods

Dataset1

We compared MDF-SA-DDI with the state-of-the-art event pre-
diction methods DDIMDL [3], DeepDDI [50] and Lee et al.’s meth-
ods [2]. We also considered several popular classification meth-
ods, namely fully connected DNN, RF, KNN and LR. We compare
MDF-SA-DDI with these models to demonstrate the advantages
of our model. Therefore, models based on RF, KNN, LR and DNN
are used as baseline methods.

Task 1 is important for DDI prediction. We evaluate perfor-
mances of all prediction methods for task 1, which predicts

DDI-associated events between known drugs. The evaluation
scores of all prediction models are shown in Table 4, and the
results demonstrate that MDF-SA-DDI produces better perfor-
mances than other methods in terms of all metrics. Furthermore,
we investigate the performances of MDF-SA-DDI for each event
and calculate the metric scores for events independently by
using predicted scores and real labels. The AUPR scores and
AUC scores of all prediction models for each event are shown
in Figure 3. The original AUPR scores and AUC scores are listed
in Supplementary Tables S2 and S3. It is likely that the events
with higher frequency can gain better performances. Among
65 events, MDF-SA-DDI achieved the highest AUPR scores in 60
events and the highest AUPR scores in 52 events, far better than
the other seven methods. In general, Figure 3 demonstrates that
MDF-SA-DDI produces greater AUPR scores and AUC scores than
other methods in most types of events. To further analyze the
performances of prediction models, we use Figure 4 to display
AUPR scores and AUC scores of different methods for 65 types
of events. These boxplots clearly show that MDF-SA-DDI pro-
duces better performances for these events than the competing
methods.

Moreover, we evaluate the performances of prediction mod-
els for task 2 and task 3. Here, we mainly compare our model
with DDIMDL, Lee et al’ method, DeepDDI and DNN, because the
results for task 1 show that DDIMDL, Lee et al’ method, DeepDDI
and DNN are more competitive. The performances of all predic-
tion methods are shown in Table 4. It could be concluded that
without prior knowledge about the new drugs, the performances
of all models for task 2 and task 3 decrease, especially for
task 3. The experimental results also demonstrate that MDF-
SA-DDI outperforms all other state-of-the-art methods for task
2 and task 3 except for AUC of ROC, which corroborates the
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Table 4. The performance of different methods on Dataset1

ACC AUPR AUC F1 Precision Recall

Task1 MDF-SA-DDI 0.9301 0.9737 0.9989 0.8878 0.9085 0.8760
DDIMDL 0.8852 0.9208 0.9976 0.7585 0.8471 0.7182
Lee et al.’s methods 0.9094 0.9562 0.9961 0.8391 0.8509 0.8339
DeepDDI 0.8371 0.8899 0.9961 0.6848 0.7275 0.6611
DNN 0.8797 0.9134 0.9963 0.7223 0.8047 0.7027
RF 0.7775 0.8349 0.9956 0.5936 0.7893 0.5161
KNN 0.7214 0.7716 0.9813 0.4831 0.7174 0.4081
LR 0.7920 0.8400 0.9960 0.5948 0.7437 0.5236

Task2 MDF-SA-DDI 0.6633 0.6776 0.9497 0.5584 0.6547 0.5078
DDIMDL 0.6415 0.6558 0.9799 0.4460 0.5607 0.4319
Lee et al.’s methods 0.6405 0.6244 0.9247 0.5039 0.5388 0.4891
DeepDDI 0.5774 0.5594 0.9575 0.3416 0.3630 0.3890
DNN 0.6239 0.6361 0.9796 0.2997 0.4237 0.2840

Task3 MDF-SA-DDI 0.4338 0.3873 0.8630 0.2329 0.2715 0.2226
DDIMDL 0.4075 0.3635 0.9512 0.1590 0.2408 0.1452
Lee et al.’s methods 0.4097 0.3184 0.8302 0.2022 0.2216 0.2027
DeepDDI 0.3602 0.2781 0.9059 0.1373 0.1586 0.1450
DNN 0.4087 0.3776 0.9550 0.1152 0.1836 0.1093

The performance of different methods on Dataset1. The best results are highlighted in boldface.

Figure 3. The AUPR scores and AUC scores of all prediction models for each event.

effectiveness of our model again. In the multi-class classification
problem with imbalanced samples, the value of AUC of ROC
cannot objectively evaluate the model.

The studies show that deep learning and multi-source drug
fusions are effective for the DDI event prediction, and our multi-
source drug fusions in the deep learning framework outper-
forms the traditional classifiers and deep network structures in
previous studies.

Dataset2

We also used larger data set (Dataset2) to verify the effectiveness
of our proposed method. We compared our method with the
state-of-the-art methods and classic machine learning methods
on three different tasks. The experimental results show that
our method can achieve the same or better performance than
the most advanced methods and machine learning methods.
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Figure 4. Boxplots displaying the AUPR and AUC of compared methods for each event.

The evaluation scores of all prediction methods are shown in
Table 5. In Task 1, the AUPR of MDA-SA-DDI is 0.9773, which
is 0.0018 worse than the highest AUPR, the F1 score of MDA-
SA-DDI is 0.9117, which is 0.0064 worse than the highest F1
score. The AUC and precision of MDA-SA-DDI achieved the best
performance, 0.9996 and 0.9381, respectively. As we all know,
the hyper-parameters of the deep learning model can affect the
performance of the model, and most of the hyperparameters of
MDA-SA-DDI are obtained from the Dataset1, so it may affect the
performance of MDA-SA-DDI on this larger data set. This may be
the reason why MDA-SA-DDI is slightly worse than the state-of-
the-art methods in some tasks. DDIMDL and Lee et al.’s method
achieve good performance in Dataset2. The similarity between
the two methods is that they both separate different types of
features, and then send different types of features to the model
for training, instead of combining different types of feature
channels. Another interesting result is that the performance of
DNN in Task1 is not very good, but the performance in Task 2
and Task 3 is very good. This may be because Task 2 and Task
3 are prone to over-fitting during the training process, so it is
possible that simple models are not prone to over-fitting, and
DNN performs very well. In general, our model performs well
on Dataset2, which also proves that our model is suitable for
different types and sizes of data sets.

Since there are more data on Dataset2, MDF-SA-DDI has
achieved better performance on all three tasks of Dataset2,
especially in task 2 and task 3. In task 2, the F1 score of MDF-
SA-DDI on Dataset2 is 0.0335 higher than that of Dataset1. In
task 3, the AUPR and f1 scores of MDF-SA-DDI on Dataset2 are
0.4450 and 0.0608 higher than those of Dataset1, respectively.
The performance of other deep learning-models has also been

improved in Dataset1. This may indicate that the hard task 2 and
task 3 may be solved by increasing the data set for deep learning-
based models. However, with the increasing size of the training
data and DDI event types, the performance of the machine
learning-based model on Dataset2 is worse than Dataset1. That
may be because the fitting ability of the machine learning-based
models is not enough to fit such a large amount of data and so
many DDI event types.

Case study
In this section, we conduct case studies to validate the useful-
ness of MDF-SA-DDI in practice.

We use all DDIs and their events in our dataset which were
originally obtained from DrugBank to train the prediction model,
and then make predictions for other drug–drug pairs. We pay
attention to five events with the highest frequencies and check
up the top 20 predictions related to each event. We used the
Interactions Checker tool provided by drugs.com to validate
these predictions.

Thirty-five DDI events can be confirmed among 100 events,
and they are shown in Supplementary Table S4. For example,
the interaction between Etodolac and Dienogest is predicted
to cause the event #0, and means Etodolac may decrease the
excretion rate of Dienogest which could result in a higher
serum level. The interaction between Etodolac and Lercanidipine
is predicted to cause the event #1, and means Dopamine
may decrease the antihypertensive activities of Lercanidipine.
More evidence about confirmed DDI events is provided in
Supplementary Table S4.

In addition, we also found that a certain drug may be closely
related to a certain DDI event. For example, 10 of the top 20
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Table 5. The performance of different methods on Dataset2

ACC AUPR AUC F1 Precision Recall

Task1 MDF-SA-DDI 0.9291 0.9773 0.9996 0.9117 0.9381 0.8910
DDIMDL 0.9229 0.9637 0.9993 0.9105 0.9212 0.9039
Lee et al.’s methods 0.9370 0.9791 0.9991 0.9181 0.9226 0.9153
DeepDDI 0.7211 0.7724 0.9914 0.6854 0.6654 0.7183
DNN 0.7908 0.8539 0.9949 0.7649 0.7560 0.8046
RF 0.6956 0.7567 0.9892 0.5760 0.6694 0.5426
KNN 0.5797 0.5964 0.8998 0.3805 0.4758 0.3347
LR 0.5229 0.5288 0.9805 0.2373 0.3128 0.2185

Task2 MDF-SA-DDI 0.6664 0.6820 0.9862 0.5919 0.6526 0.5518
DDIMDL 0.6720 0.7086 0.9885 0.5817 0.6680 0.5295
Lee et al.’s methods 0.6917 0.7119 0.9687 0.5934 0.6144 0.5848
DeepDDI 0.5883 0.5851 0.9746 0.4709 0.5250 0.4361
DNN 0.6687 0.6838 0.9818 0.6164 0.7279 0.5479

Task3 MDF-SA-DDI 0.4794 0.4450 0.9686 0.2937 0.3667 0.2659
DDIMDL 0.4699 0.4386 0.9685 0.3032 0.3773 0.2729
Lee et al.’s methods 0.4867 0.4349 0.9093 0.3082 0.3355 0.3066
DeepDDI 0.3611 0.2820 0.9264 0.1868 0.2301 0.1711
DNN 0.4570 0.4129 0.9565 0.2997 0.4345 0.2508

predictions related to event #2 (the serum concentration
increase) are related to Ceritinib. A total of 16 of the top
20 predictions related to event #4 (the therapeutic efficacy
decrease) are related to Naltrexone.

Conclusion
We proposed a DDI event prediction model based on multi-
source drug fusion, multi-source feature fusion and transformer
self-attention mechanism, and proved the effectiveness and
robustness of our model. In addition, we also proved the effec-
tiveness of the mixup data augmentation strategy. Experimental
results have proved that our proposed model is better than the
state-of-the-art models. The case studies were also performed
to identify the new DDI events which are not included in our
dataset.

Key Points
• This study proposed a novel DDI event prediction

method, MDF-SA-DDI: predicting drug–drug interac-
tion events based on multi-source drug fusion, multi-
source feature fusion and transformer self-attention
mechanism.

• This study proved the effectiveness of multi-modal
drug fusion and mixup data augmentation algorithm.

• The MDF-SA-DDI method has achieved better per-
formance than classic machine learning algorithms
and the state-of-the-art DDI prediction methods on all
three tasks and two datasets.

• The case studies for five DDI events were conducted,
which confirmed the effectiveness of the proposed
method.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.

Code and data availability

The source codes and data are available at https://github.co
m/ShenggengLin/MDF-SA-DDI.
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