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Abstract

Single-cell Hi-C data are a common data source for studying the differences in the three-dimensional structure of cell
chromosomes. The development of single-cell Hi-C technology makes it possible to obtain batches of single-cell Hi-C data.
How to quickly and effectively discriminate cell types has become one hot research field. However, the existing
computational methods to predict cell types based on Hi-C data are found to be low in accuracy. Therefore, we propose a
high accuracy cell classification algorithm, called scHiCStackL, based on single-cell Hi-C data. In our work, we first improve
the existing data preprocessing method for single-cell Hi-C data, which allows the generated cell embedding better to
represent cells. Then, we construct a two-layer stacking ensemble model for classifying cells. Experimental results show
that the cell embedding generated by our data preprocessing method increases by 0.23, 1.22, 1.46 and 1.61% comparing with
the cell embedding generated by the previously published method scHiCluster, in terms of the Acc, MCC, F1 and Precision
confidence intervals, respectively, on the task of classifying human cells in the ML1 and ML3 datasets. When using the
two-layer stacking ensemble framework with the cell embedding, scHiCStackL improves by 13.33, 19, 19.27 and 14.5 over the
scHiCluster, in terms of the Acc, ARI, NMI and F1 confidence intervals, respectively. In summary, scHiCStackL achieves
superior performance in predicting cell types using the single-cell Hi-C data. The webserver and source code of scHiCStackL
are freely available at http://hww.sdu.edu.cn:8002/scHiCStackL/ and https://github.com/HaoWuLab-Bioinformatics/scHiCSta
ckL, respectively.
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Introduction
High-throughput chromosome conformation capture (Hi-C) is a
technology that uses high-throughput DNA sequencing technol-
ogy and chromosome conformation capture technology to cap-
ture genome-wide chromatin interaction information [1]. The
birth of Hi-C technology allows researchers to further analyze
the relationship between the three-dimensional structure of the
genome and the basic functions of cells [2–5]. However, because
of cell type heterogeneity [6–10], traditional bulk Hi-C data have
limitations in studying heterogeneous cell populations. Thus,
Nagano et al. [11] proposed a single-cell Hi-C technology that can
detect chromatin interactions in a single cell.

Initially, researchers tried to apply the computational meth-
ods of bulk Hi-C data to single-cell Hi-C data when analyzing the
differences in the three-dimensional structures of chromosomes
in heterogeneous cell populations [12–15]. Because of the low
throughput limitation of original single-cell Hi-C technology
[16], the methods for automatically identifying cell types based
on single-cell Hi-C data have not been developed. The sciHi-C
protocol proposed by Ramani et al. [16] successfully improves
the throughput of capturing single-cell chromosome interaction
information, which made it possible to classify a large number
of heterogeneous cell populations based on single-cell Hi-C data.
There are different types of cells when sequencing single-cell
Hi-C data of cell populations at the same time. The specificities
in heterogeneous cells may be masked if each cell cannot be
accurately identified in the experiment. Thus, it is important to
classify cells based on single-cell Hi-C data accurately. However,
biological methods to detect cell types consume a lot of experi-
mental costs. Thus, it is necessary to use computational meth-
ods to identify cell types based on single-cell Hi-C data. More-
over, the single-cell Hi-C data measured in batches are sparse,
which is also a challenge for accurately classifying cells based
on single-cell Hi-C data. The existing algorithms for classifying
heterogeneous cell populations based on single-cell Hi-C data
have the following limitations. Firstly, some researchers focus
on the classification of different cell cycles [17–19]. However, the
performance of these algorithms in predicting unidentifed cell
types at the same cell stage is still unknown. Secondly, Zhou et
al. [20] proposed a clustering algorithm (scHiCluster) to predict
unidentified cell types based on single-cell Hi-C data. scHi-
Cluster used a convolution smoothing algorithm and a random
walk with restart algorithm to process the chromosome contact
matrix in single cell, and used two principal component anal-
yses (PCA) operations to generate cell embeddings. Finally, the
scHiCluster used the K-means algorithm to cluster cells based on
cell embedding. The scHiCluster algorithm solved preliminarily
the problem of how to predict unidentified cell types. However,
high-precision classification algorithms are still limited in terms
of classifying the identified cells.

In this study, we propose a computational framework to
achieve high-precision cell classification based on sparse single-
cell Hi-C data. We propose a novel cell embedding- and stacking
ensemble learning-based approach, called scHiCStackL, to clas-
sify heterogeneous cell groups based on single-cell Hi-C data.
We first improve the data preprocessing part of the scHiCluster
algorithm by using the following steps. (1) Based on the charac-
teristics of the three-dimensional structure of the chromosome,

we use the close contact information in the space to smooth the
chromosome contact matrix to solve the sparsity of the contact
matrix. (2) We use Kernel principal component analysis (KPCA) to
generate cell embedding to retain more contact feature informa-
tion. Then, we construct a stacking ensemble model to classify
cells based on three traditional classification algorithms. Finally,
we conduct a comprehensive comparison of the scHiCStackL
and previously published algorithms. The analysis shows that
our proposed scHiCStackL framework can significantly improve
the classification performance in predicting cell types based on
sparse single-cell Hi-C data.

Materials and methods
Datasets

The dataset we used is the low coverage dataset downloaded
from the GEO database: namely, Ramani dataset and Flyamer
dataset [16, 18]. We mainly focus on two parts of the Ramani
dataset: ML1 and ML3. The interaction pairs and cell quality
files of ML1 and ML3 are all downloaded from GSE84920. ML1
and ML3 contain four human cells (HeLa, HAP1, GM12878 and
K562) and two mouse cells (MEF1 and Patski). In the dataset
file, the cell quality file contains specific information of the cell,
such as the cell type, the percentage of the captured fragments
mapped to the mouse and human whole gene sequences, etc.
The interaction pairs file contains specific information about
the contact of chromosome fragments in the cell, such as the
start position of the contact fragment and the end position of the
contact fragment. In addition, the number of contacts captured
by cells in the dataset we used mainly ranges from 5.2K to 35K.
The interaction files of Flyamer dataset are all downloaded from
GSE80006 [18]. For the Flyamer dataset, we select contact files
with a resolution = 200K. The Flyamer dataset includes three
types of mouse cells: Oocyte (NSN and SN), ZygP and ZygM. The
number of contacts in the Flyamer dataset ranges from 1.4K
to 1.65M. Since our algorithm mainly deals with sparse single-
cell Hi-C data, we randomly downsample so that the number of
contacts of each cell in the Flyamer dataset ranges from 1.4 to
35K.

Data preparation

Because of some irrevelant data in the dataset, it is necessary to
ensure the quality of the research data. As our research mainly
focuses on cell classification in the four human cell lines, we
firstly screen out the cells that are not from humans in the
Ramani dataset [16]. Then, we screen out these simulated cells
as Ramani et al. generated a lot of irrelevant simulated cell data.
To prevent some cells with a minimal number of read-pairs from
affecting the final clustering and classification results, we set a
contact threshold th1 = 5K, which is used to screen out cells with
a total contact number less than 5K.

Many computational methods on single-cell Hi-C data stan-
dardize the interaction data of a chromosome as a chromosome
contact matrix according to a given resolution [2–4, 12–16, 21].
We use the resolution R to divide the chromosomes of length L
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scHiCStackL: single-cell Hi-C classifier 3

Figure 1. The overall framework of scHiCStackL.

as follows:

n = L
R

. (1)

Moreover, the length of the fore n−1 bins in a chromosome is the
same. According to the location of the bin on the chromosome,
chromosome contact data are represented as a chromosome
contact matrix An∗n, where Aij represents the number of inter-
action partners between the ith and the jth on the chromosome.

Framework of scHiCStackL

We illustrate the cell embedding- and stacking ensemble
learning-based framework of scHiCStackL in Figure 1 [22, 23].
There are two crucial steps in the scHiCStackL framework: cell
embedding generation and stacking ensemble learning. In this
section, we describe the two-step workflows of the scHiCStackL
framework step by step.

Cell embedding generation

In this section, we improve the cell embedding generation
method proposed by Zhou et al. [20] to enhance the effect
of cell embedding. The four major steps in the improved cell
embedding generation method are described below.
Step 1.Smoothing of adjacent gene fragments Because of the
limitations of the experimental technologies, there is a certain
difference between the interaction count in the low-coverage Hi-
C data and the actual interaction count on the chromosome [24,
25]. Since this error reduces the specificity of the chromosome
structure of different types of cells, here we propose a new
method to smooth the chromosome matrix to reduce the error
of contact count. Zhou et al. [20] have dealt with errors in the
chromosome contact matrix by assuming that the interaction
information of linearly adjacent chromosome segments on
chromosomes is similar.However, there are chromosome

fragments with long linear distances but short spatial distances
on chromosomes [1, 2, 26, 27]. Thus, we expand this hypothesis,
that is, assume that the interaction information of the target
gene segment is similar to the spatially adjacent gene segments.
The gene fragments spatially adjacent to the target gene
fragment meet at least one of the following conditions: (1)
linearly adjacent to the chromosome; (2) interacting with
the target gene fragment. Because a row of the chromosome
contact matrix An∗n represents the interaction information of the
corresponding bin, we generate a neighbor bin contact matrix
for each target bin according to the location of the target bin on
the chromosome and the interaction information of the target
bin. Assume that the number of neighbors of bini is b, and the
size of its neighbor bins contact matrix Ni is b ∗ n. Moreover, a
row represents the interaction information of neighboring bins
in Ni. The smoothing process of bini’s interaction information is
as follows:

Cij = Aij + ∑b
s=1 Ni

sj

b + 1
1 ≤ i ≤ j ≤ n, (2)

where C represents the smoothed chromosome contact matrix.
Because of the symmetry of the chromosome contact matrix,
we only smooth the diagonal and upper triangle elements of
the chromosome contact matrix. Thus, the columns are always
greater than or equal to the rows in the smoothing process.
Step 2. Restart random walk smoothing To improve the speci-
ficity of cell chromosome structure, the connections between
chromosome segments and the overall structure information of
chromosomes need to be further explored in the chromosome
contact matrix [20]. In general, the restart random walk algo-
rithm is used to improve the affinity between two nodes in the
graph and capture the global structural information of the graph.
Thus, we use the restart random walk algorithm to deal with
the filled chromosome contact matrix Cn∗n [20, 28]. Given that
restarting random walk is a graph algorithm, we treat Cn∗n as a
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weighted undirected graph. In matrix C, Cij represents the weight
of the edge between node (gene fragment) i and node j (gene
fragment). First, we normalize the chromosome contact matrix
C as follows:

NCij = Cij∑n
j=1 Cij

, (3)

where NC is the normalized version of the chromosome contact
matrix C. Because the restart step mines the overall structural
information in the graph, the restart probability should be preset
to represent the probability of the walking process returning to
the starting point. In this step, we set the restart probability to
rp, then 1 − rp represents the probability of transferring to the
adjacent bin. Because NC is still in the form of a matrix, the
process of the random walk can be expressed as the following
matrix operation:

Pt = (1 − rp)Pt−1NC + rpI, (4)

where Pt represents the transition probability matrix after the
tth random walk. Pt

ij represents the probability of node i transfer
to node j, and it can also be used to represent the relationship
between bin i and bin j. When t = 1, P0 and I are both identity
matrices, and their sizes are the same as NC. In addition, we also
set a threshold th2 to identify whether the restarting random
walk process converges. Specifically, the restart random walk
process on the chromosome contact matrix NC reaches conver-
gence when ||Pt − Pt−1||2 ≤ th2.
Step 3. Contact binarization. Because of the low coverage of Hi-C
data, the scales of chromosome interaction counts captured by
different cells are different. To predict cell types under the same
standard, a threshold th3 is set to filter the elements of the matrix
after a random walk [20]. The screening process is as follows:

Mij =
⎧⎨
⎩

0, Pij ≤ th3;

1, Pij > th3.
(5)

The probability transition matrix P is converted into a binary
matrix after screening. The relationship between bins is only
represented by 1 and 0, which can unify the scale of the contact
matrix in different cells. This step helps to retain the most
critical structural information on the chromosomes.
Step 4. Feature extraction The size of the binary matrix after
binarization is large, and each cell has 23 binary matrices. Thus,
we use dimension reduction algorithms to reduce the dimen-
sionality of chromosome structure data and extract the features
of chromosome structure in cells. First, we reshape the binary
matrix after binarizing it into a vector. Therefore, Mn∗n is con-
verted to a chromosome row vector r of length n2. Then, we
integrate the 23 chromosome vectors in a cell into a cell vector
c with a length of 23n2. Finally, the cell vectors of s cells are
integrated into a matrix Vs∗23n2 for dimensionality reduction to
generate the embedding of each cell, where s is the number of
cells to be classified. Since there is no research to prove that
correlations between chromosome structure data are linear. We
use KPCA to generate cell embedding [29].

Stacking ensemble learning

In this step, we construct a stacking ensemble model to classify
cells based on the cell embedding generated in the previous step
[22, 23], where the cell embedding is used as the feature vector of

the cell. Since the feature vector generated by the KPCA dimen-
sionality reduction algorithm is linear, the base classifiers we
choose are classifiers based on linear models: ridge regression
(RR) classifier [23, 30] and logistic regression (LR) classifier [31,
32]. And the meta-classifier in the second layer is a Gaussian
naive bayes (GaussianNB) [33, 34]. The structure of the Stacking
ensemble model we constructed is shown in Figure 2.

In the first-level learner, we integrate two different classi-
fiers: RR and LR. In addition, the parameters of the two base
classifiers in the first-level ensemble learning are set as the
optimal parameters obtained by the grid optimization algorithm.
Random sampling is used to divide the dataset S = {(xi, yi), i =
1, 2, ..., s} into a training dataset SD = {(xi, yi), i = 1, 2, ..., s1} and
a test dataset ST = {xi, i = 1, 2, ..., s2}, where s1 and s2 are the
number of cell samples in the training dataset and test dataset,
respectively. Here, xi denotes the principal components in the
cell embedding. The corresponding relationship between xi and
label yi of the four types of cells is set as follows:

xirepresent =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

GM12878, yi = 0;

HAP1, yi = 1;

HeLa, yi = 2;

K562, yi = 3.

(6)

In the first layer, the two base classifiers convert the input cell
feature vectors into the input data of the GaussianNB classi-
fier in the second layer. The workflow of the first layer of the
integrated learner is as follows:

1. To avoid the problem of model overfitting [35], we use a
10-fold cross-validation algorithm and random sampling
algorithm to divide the training dataset SD into 10 parts:
S1, S2, ...,and S10 [36, 37]. For the kth (k = 1, 2, ..., 10) training,
we choose SD − Sk

D and Sk
D as the current training dataset

and test dataset, respectively. Sk
D is used to generate a new

training dataset based on the predicted value of the base
classifier. Thus, the training dataset generated in the kth
iteration is Sk

D_new = {(�k
l (xj), yj)}((xj, yj) ∈k

D, l = 1, 2). Then,
the training dataset ST is transformed into a new dataset
Sk

T_new = {�k
l (xj)}(xj ∈ ST, l = 1, 2) based on the prediction of

the base classifier in the kth iteration.
2. We integrate 10 new training datasets into a new training

dataset SD_new = {(Sk
D_new), k = 1, 2, ..., 10}, which serves as the

second-level training dataset. Since our data have multiple
class labels, we use voting to generate the test dataset
ST_new = {Mode(�k

l (xj)), xj ∈ ST, k = 1, 2, ..., 10, l = 1, 2} of the
second layer (Mode() is a function to find the mode).

In the next step, the new training dataset ST_new is used to
train the GaussianNB classifier in the second layer. The new
test dataset is used to evaluate the performance of the stacking
ensemble model we built. In addition, it is worth noting that we
use the 5-fold cross-validation strategy and random sampling
algorithm to divide the training set and test set to prevent the
model overfitting.

Results
In this section, we compare scHiCStackL with multiple algo-
rithms to evaluate its performance in classifying sparse singel-
cell Hi-C data. [20]. In order to facilitate comparison, we use
accuracy (Acc), Matthew’s correlation coefficient (MCC), F1-score
(F1) and Precision to evaluate the classification results [38–40],
and use adjusted Rand index (ARI), normalized mutual informa-
tion (NMI) and adjusted mutual information (AMI) to evaluate
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scHiCStackL: single-cell Hi-C classifier 5

Figure 2. The structure of the scHiCStackL ensemble model.

the clustering results [41–44]. In addition, we use the boot-
strap method to calculate the confidence interval of the multi-
dimensional clustering and classification results for the sake of
analyzing the comparison results.

Performance evaluation of cell embedding generation
method

Since our cell embedding generation method is an improvement
of the scHiCluster method [20], we first compare the data prepro-
cessing part of the scHiCStackL method with that of scHiCluster.
We use two cell embedding generation methods to process the
dataset (including 626 human cells after data preparation in ML1
and ML3) to generate two cell embeddings: scHiCStackL cell-
embedding and scHiCluster cell-embedding [16, 20]. We use the
grid optimization algorithm to obtain the parameters in the cell
embedding generation method. After experimental testing, we
use linear kernel as kernel function of KPCA. In order to compare
the effects of the two cell embedding generation methods, we
use the K-means method to cluster the two cell embeddings with
reference to the clustering part of the scHiCluster method. We
select a certain number of principal components as the features
of the cell. As shown in Supplementary Figure S1, the most
experimental results are unstable when the fore 10-dimensional
principal components are used as features. Thus, we choose
the comparison of results starting from the fore 11-dimensional
principal components. When the cell features are the fore 11–20
dimensional principal components, the clustering results of the
two cell embeddings tend to be stable. Thus, in order to compare
the clustering performance of the two cell embeddings, we use
the bootstrap method to calculate the confidence interval of
the clustering results from the fore 11–20 dimensional principal
components. The comparison of the clustering results of the two
cell embeddings is shown in Figure 3 (99% confidence interval
comparison) and Supplementary Figure S2 (comparison of the
results of the principal components of each dimension).

From the results provided in Figure 3 and Supplementary Fig-
ure S2, we conclude that scHiCStackL cell-embedding achieves

Figure 3. Comparison of the clustering effect of the two cell embeddings on

ML1 and ML3 datasets. The upper and lower edges indicate the maximum and

minimum values of the results, respectively. The box represents the confidence

interval of the results. (The confidence interval of scHiCluster cell-embedding is

shown as a line in the figure due to the smaller confidence interval.).

a better clustering result in comparison with scHiCluster cell-
embedding in terms of Acc ([0.877, 0.877] versus [0.877, 0.88]),
ARI ([0.828, 0.828] versus [0.833,0.836]), NMI ([0.823,0.823] versus
[0.833, 0.837]), and AMI ([0.807, 0.807] versus [0.819, 0.821]). More-
over, we also compare the clustering results of the two data
preprocessing methods on the downsampled Flyamer dataset
[18]. The comparison results of the two embedding genera-
tion methods on the downsampled Flyamer dataset are shown
in Supplementary Figure S3 (99% confidence interval compar-
ison) and Supplementary Figure S4 (comparison of the results
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Figure 4. The classification effect comparison of different combinations of the

improved sub-steps (Adj and KPCA) and the original sub-steps (Con and two PCA).

The upper and lower edges indicate the maximum and minimum values of the

results, respectively. The box represents the confidence interval of the results.

Figure 5. The comparison between scHiCStackL and the base classifier is based

on the 99% confidence interval of results. The upper and lower edges indicate the

maximum and minimum values of the results, respectively. The box represents

the confidence interval of the results.

of the principal components of each dimension) [18]. Supple-
mentary Figures S3 and S4 demonstrate that scHiCStackL cell-
embedding outperforms scHiCluster cell-embedding in terms of
Acc, ARI, NMI and AMI on the downsampled Flyamer dataset.
These results show that our improved cell embedding can better
represent the three-dimensional structure of the chromosome
in the cell.

Moreover, we compare the classification effects of the cell
embedding generated by the combination of the original sub-
steps (Con and Twice PCA) and the improved substeps (smooth-
ing of adjacent gene fragments (Adj) and KPCA) in the Stacking
ensemble model to prove that scHiCStackL cell-embedding is
more suitable for the stacking ensemble model we constructed.
Here, we use MCC, Acc, F1 and Precision to evaluate the final
classification results. When the fore 11–50 dimensional principal
components are used as cell characteristics, the comparison

Figure 6. The comparison between scHiCStackL and four methods (scHiCluster,

HiCRep-MDS, Raw_PCA and Decay) is based on the 99% confidence interval of

results(ML1 and ML3 datasets). The five methods are scHiCStackL, scHiCluster,

HiCRep-MDS, Raw_PCA and Decay from left to right. The upper and lower edges

indicate the maximum and minimum values of the results, respectively. The box

represents the confidence interval of the results.

Figure 7. The comparison between scHiCStackL and four methods (scHiCluster,

HiCRep-MDS, Raw_PCA and Decay) is based on the 99% confidence interval of

results(the whole Ramani dataset). The five methods are scHiCStackL, scHiClus-

ter, HiCRep-MDS, Raw_PCA and Decay from left to right. The upper and lower

edges indicate the maximum and minimum values of the results, respectively.

The box represents the confidence interval of the results.

results are shown in Figure 4 (99% confidence interval compari-
son) and Supplementary Figure S5 (comparison of the results of
the principal components of each dimension).

In the ensemble model of scHiCStackL, the cell embedding
generated by our improved method achieves the optimal Acc
confidence interval of [0.995, 0.997], MCC confidence interval of
[0.993, 0.996], F1 confidence interval of [0.995, 0.997] and Preci-
sion confidence interval of [0.996, 0.998], respectively. Although
the original cell embedding only reaches the Acc confidence
interval of [0.988, 0.99], MCC confidence interval of [0.983, 0.985],
F1 confidence interval of [0.988, 0.99] and Precision confidence
interval is [0.989, 0.991]. The results show our improved substeps
are suitable for combining with the stacking ensemble model we
established to classify the four types of cells from the Ramani
dataset.
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scHiCStackL: single-cell Hi-C classifier 7

Figure 8. The comparison between scHiCStackL and four methods (scHiCluster, HiCRep-MDS, Raw_PCA and Decay) on five different scale (500, 1000, 1500, 2000, 2500)

datasets. The performances of five methods are compared using the Acc(a), ARI(b), NMI(c) and F1(d) evaluation indicators. The five methods are scHiCStackL, scHiCluster,

HiCRep-MDS, Raw_PCA and Decay from left to right. The upper and lower edges indicate the maximum and minimum values of the results, respectively. The box

represents the confidence interval of the results.

Classification performance evaluation of ensemble
model in scHiCStackL

Next, we evaluate the classification performance of the estab-
lished stacking ensemble model and compare the results with
two base classifiers (LR and RR). The cell embedding applied
to the established stacking ensemble model and the two base
classifiers are all generated by our improved method. After
testing, we choose KPCA with the sigmoid kernel function to
generate the final cell embedding. Similarly, we use MCC, Acc,
F1 and Precision to evaluate the final classification results. The
evaluation of the classification results is shown in Figure 5 (99%
confidence interval comparison) and Supplementary Figure S6
(comparison of the results of the principal components of each
dimension).

Figure 5 and Supplementary Figure S6 demonstrate that
scHiCStackL achieves optimal performance in terms of Acc
confidence interval [0.995, 0.997], MCC confidence interval
[0.993, 0.996], F1 confidence interval [0.995, 0.997] and Precision
confidence interval [0.996, 0.998]. Although RR and LR reaches

the Acc confidence interval of ([0.994, 0.997] and [0.993, 0.996]),
MCC confidence interval of ([0.991, 0.996] and [0.991, 0.994]),
F1 confidence interval ([0.994, 0.997] and [0.994, 0.996]), and
Precision confidence interval ([0.994, 0.997] and [0.994, 0.996]).
These results show that scHiCStackL integrates the base
classifier and achieves better and more stable performance.

Evaluation of scHiCStackL’s performance in predicting
cell types

In this section, we compare scHiCStackL with scHiCluster,
HiCRep-MDS, Raw_PCA and Decay methods on the ML1 and
ML3 datasets, Ramani dataset and Flyamer dataset [16–18,
45]. Kmeans clustering algorithm is utilized to cluster the
embeddings generated by HiCRep-MDS, Raw_PCA and Decay
on ML1 and ML3 datasets, which contains 626 human cells after
data preparation. Here, we use Acc, ARI, NMI and F1 evaluation
indicators to evaluate the performance of the five methods.
The results are shown in Supplementary Table S4 (confidence
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interval of the results of each method), Figure 6 (confidence
interval comparison) and Supplementary Figure S7 (comparison
of the classification results of each dimension).

From the results provided in Supplementary Table S4,
Figure 6 and Supplementary Figure S7, the experimental results
achieved by the HiCRep-MDS, Decay and Raw_PCA methods
are poor on the ML1 and ML3 datasets. However, scHiCluster
and scHiCStackL achieve better performance in terms of Acc
confidence interval ([0.878, 0.878] versus [0.995, 0.997]), ARI
([0.829, 0.830] versus [0.989, 0.992]), NMI ([0.825, 0.827] versus
[0.984, 0.990]) and F1 ([0.869, 0.869] versus [0.995, 0.997]).

Then, we select the whole Ramani dataset, which contains
2655 human cells after data preparation, to evaluate the perfor-
mance of scHiCStacL, scHiCluster, HiCRep-MDS, Raw_PCA and
Decay methods. The comparison results are shown in Supple-
mentary Table S4, Figure 7 and Supplementary Figure S8 (com-
parison of the classification results of each dimension).

Figure 7 and Supplementary Figure S8 show that scHiCStackL
still has superior performance comparing to the other four
methods on the whole Ramani dataset. Moreover, we also
compare the performance of the five methods on the Flyamer
dataset. The comparison results are shown in Supplementary
Table S4, Supplementary Figures S9 and S10, which demonstrate
that scHiCStackL achieves better performance compared
with scHiCluster, HiCRep-MDS, Raw_PCA and Decay methods
on the Flyamer dataset. All these results indicate that our
proposed scHiCStackL method achieves optimal performance
in predicting cell types.

In order to prove the robustness of scHiCStackL when pro-
cessing datasets of different sizes, we compare the performance
of scHiCStackL, scHiCluster, HiCRep-MDS, Raw_PCA and Decay
methods on 5 different scale datasets by randomly selecting 500,
1000, 1500, 2000 and 2500 cells from the Ramani dataset. Then
we conduct analysis on the results of scHiCStackL, scHiClus-
ter, HiCRep-MDS, Raw_PCA and Decay methods based on these
datasets, which are shown in Supplementary Table S5, Figure 8
and Supplementary Figures S11–S15.

Supplementary Table S5 shows that the clustering results
achieved by the HiCRep-MDS and Decay method are poor on
five different scale datasets. Figure 8 and Supplementary Fig-
ures S11–S15 show scHiCStackL, on different scale datasets,
maintains better performance than scHiCluster and Raw_PCA in
terms of confidence interval for Acc, ARI, NMI and F1. Moreover,
these results also prove that our algorithm has strong robustness
on datasets of different scales.

Discussions and limitations

In this study, we first improve Zhou et al.’s cell embedding gen-
eration method by interpolating more chromosome structure
information and retaining more chromosome structure features.
In the stacking ensemble model, we choose the linear classifiers
as the base classifiers, which is easier to fit the data generated by
KPCA dimensionality reduction. The stacking ensemble model
combines the advantages of the two base classifiers through vot-
ing methods. Moreover, the model better fits the cell embedding
through training, and achieves high-precision cell classification.
We compare our improved cell embedding generation method
with the original cell embedding generation method in scHiClus-
ter [20]. Compared with the original cell embedding generation
method, the cell embedding generation method in scHiCStackL
achieves competitive performance on the four evaluation indi-
cators. In addition, we compare the performance of scHiCStackL,
scHiCluster, HiCRep-MDS, Raw_PCA and Decay in predicting cell

types on the Ramani dataset and Flyamer dataset. On Ramani
and Flyamer datasets, scHiCStackL has far better performance
than other four methods in terms of four evaluation indicators.
These results demonstrate that scHiCStackL has a good ability
in classifying cells and strong robustness. However, there are
few high-throughput sparse single-cell Hi-C data at present. As
more and more sparse single-cell Hi-C data are obtained in the
future, the practicality of scHiCStackL is expected to be further
improved.

Conclusion
In this study, we propose a novel stacking ensemble learning-
based approach for classifying sparse single-cell Hi-C data,
called scHiCStackL. The first part of scHiCStackL is an improved
version of the existing data preprocessing method for generating
cell embedding, and the second part is the stacking ensemble
model we established for classifying cells. We first evaluate the
performance of the improved data preprocessing method and
the original data preprocessing method in terms of clustering
and cell classification. The results show that our improved data
preprocessing method can better improve the cell classification
and clustering performance. Then, we evaluate the performance
of the scHiCStackL, scHiCluster, HiCRep-MDS, Raw_PCA and
Decay methods in predicting cell types based on sparse single-
cell Hi-C data. The results show that our proposed scHiCStackL
method has optimal performance comparing to scHiCluster,
HiCRep-MDS, Raw_PCA and Decay. In addition, it was found that
the continuous cycle stages of cells can be separated based on
single-cell Hi-C data [17, 19]. It is hoped that our improved data
preprocessing method can be applied to single-cell Hi-C data
with cells of different cycles to study the classification of cell
cycles in future work.

Key Points
• We propose a novel computational framework, called

scHiCStackL, to achieve the high-precision cell classi-
fication based on sparse single-cell Hi-C data.

• We improve the cell embedding generation method for
single-cell Hi-C data proposed by Zhou et al. to improve
the ability of cell embedding.

• We establish a two-layer Stacking ensemble learn-
ing model to achieve high-accuracy cell classification
based on cell embedding.

• Comprehensive comparison experiments show that
the performance of scHiCStackL is far better than that
of Zhou et al.’s scHiCluster algorithm in predicting cell
types on different scale datasets.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.
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