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Polypharmacy (multiple use of drugs) is an effective strategy for combating complex or co-existing diseases.
However, a major consequence of polypharmacy is a higher risk of adverse side effects due to drug-drug in-
teractions, which are rare and observed in relatively small clinical testing. Thus, identification of polypharmacy
side effects remains challenging. Here, we propose a deep learning-based method, DeepPSE, to predict poly-

pharmacy side effects in an end-to-end way. DeepPSE is composed of two main modules. First, multiple types of
neural networks are constructed and fused to learn the deep representation of a drug pair. Second, the encoder
block of transformer that includes self-attention mechanism is built to get latent features, which are further fed
into the fully connected layer to predict polypharmacy side effects of drug pairs. Further, DeepPSE is compared
with five baseline or state-of-the-art methods on a benchmark dataset of 964 types of polypharmacy side effects
across 63473 drug pairs. Experimental results demonstrate that DeepPSE achieves better performance than that
of all five methods. The source codes and data are available at https://github.com/ShenggengLin/DeepPSE

1. Introduction

Polypharmacy (i.e., multiple drugs are jointly used) is an effective
strategy for combating complex or co-existing diseases [1-4]. A major
consequence of polypharmacy to a patient is a much higher risk of side
effects due to adverse drug-drug interactions [5-8]. Reliable identifi-
cation of polypharmacy side effects is challenging because they are rare
and observed in relatively small clinical testing. It is practically impos-
sible to experimentally identify the polypharmacy side effects of all
possible pairs of drugs. Therefore, it is desirable and urgent to develop
computational methods to predict polypharmacy side effects, which is
vital to drug discovery and development [9-15].

In recent years, side effect data of single drugs or drug combinations
are collected from relevant literature, clinical trials, laboratory studies
and electronic medical records to construct databases, which facilitate
the development of computational methods for predicting

polypharmacy side effects. Since 2018, there are several studies to
develop data-driven or/and knowledge-driven approaches to predict
polypharmacy side effects by deep neural network (DNN) [16], graph
convolutional network (GCN) [17] and knowledge graph (KG) repre-
sentation learning methods [18-21]. The pioneering study by Zitnik
et al. [17] constructed the benchmark dataset of 964 commonly occur-
ring types of polypharmacy side effects across 63473 drug combinations.
Then, they formulated polypharmacy side effect modeling as a multi-
relational link prediction problem on a multimodal graph consisting of
drug, protein and side effect relationships. They proposed Decagon to
predict what will the exact type of the side effect be for a given pair of
drugs by using GCN in an end-to-end way, based on a multimodal graph
of protein-protein interactions, drug-target interactions and DDIs, where
each side effect is an edge of a different type. This architecture becomes
a baseline for several other state-of-the-art methods for polypharmacy
side effect prediction.
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Based on the baseline model Decagon, Wang et al. [22] added
drug-enzyme interactions to the multimodal graph to improve predic-
tion of polypharmacy side effects. Instead of viewing the graph as a
whole, Xu et al. [23] proposed a tri-graph information propagation
model to view the multi-modal biomedical graph as three subgraphs.
This method embeds proteins and drugs into different spaces of possibly
different dimensions, rather than the same space and dimensions. Later,
several studies are developed for interpretable prediction of poly-
pharmacy side effects by using graph feature attention network [18,20].
For example, Yao et al. [20] proposed a novel model by further incor-
porating complex relations of side effects into knowledge graph em-
beddings. This model can translate and transmit multidirectional
semantics with fewer parameters, leading to better scalability in
large-scale knowledge graphs. Novacek et al. [24] proposed a new
knowledge graph embedding technique that uses multi-part embedding
vectors to predict polypharmacy side-effects. Masumshah et al. [16]
proposed a neural network-based method for polypharmacy side effect
prediction by using feature vectors based on mono side effects, and
drug-protein interaction (DPI) information.

Although those methods mentioned above have achieved satisfac-
tory performance, they still have some limitations. For example, the
existing studies just concatenate two drug vectors together without
trying other ways to fuse the information to represent drug pairs, which
may miss the rich information contained in the drug pairs. In order to
explore whether different drug fusion methods are beneficial to predict
polypharmacy side effects, we propose a novel method, DeepPSE, which
predicts polypharmacy side effects based on deep representation of drug
pairs and self-attention mechanism. DeepPSE contains two main mod-
ules. First, multiple types of neural networks are constructed to learn the
deep representation of a drug pair in four different way. Second, the
encoder block of transformer [25] that includes self-attention mecha-
nism is built to perform latent feature fusion with the four latent vectors
of drug pairs mentioned above and the fifth hidden vector obtained by
element-wise addition of these four latent vectors, which are combined
and further fed into the fully connected layer to predict polypharmacy
side effects.

Furthermore, DeepPSE is compared to five baseline or state-of-the-
art methods on a benchmark dataset of 964 types of polypharmacy
side effects across 63473 drug pairs. Experimental results demonstrate
that our proposed method DeepPSE achieves better performance than
that of all five methods. Moreover, our model also proves the effec-
tiveness of the feature fusion of deep representation of drug pairs by
various neural networks.

2. Materials and methods
2.1. Datasets

In this work, we used the same benchmark dataset as that con-
structed by Zitnik et al. [17]. The dataset contains 645 drugs and 964
polypharmacy side effect types. Each drug has two types of features
about mono side effects and DPI information. In this section, the poly-
pharmacy side effects, the mono side effects, and the DPIs are presented
in details as below.

2.1.1. Polypharmacy side effects

Polypharmacy side effects are collected from the TWOSIDES data-
base [26], which is sourced from the Food and Drug Administration
Adverse Event Reporting System (FAERS) and provides a reliable and
comprehensive DDIs database with 1317 side effects for 645 drugs
across 63473 drug pairs. As in the previous studies on predicting poly-
pharmacy side effects [16,17], we consider 964 polypharmacy side ef-
fects which occurred in at least 500 DDIs.

2.1.2. Mono side effects information
The side effects of individual drugs (mono side effects) are obtained
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from the Side Effects Resource (SIDER) and OFFSIDES databases [27].
The information in the SIDER database is extracted from drug labels,
which contains 1556 drugs and 5868 side effects compiled from public
documents. The entries in OFFSIDES database are observed during
clinical trials, which contain side effects for 1332 drugs and 10097 la-
bels. Like TWOSIDES, OFFSIDES was generated from FAERS that was
collected from clinical reports, patients, and drug companies. Finally,
10184 mono side effects of 645 drugs in the TWOSIDES database were
obtained by merging and eliminating synonym side effects in the SIDER
and OFFSIDES databases.

2.1.3. Drug-protein interactions

DPIs are obtained from the Search Tool for Interactions of Chemicals
(STITCH) database [28], which provides the relationship between drugs
and target proteins. Using the STITCH database, we obtained in-
teractions between 7795 proteins and 645 drugs in the TWOSIDES
database.

2.2. Drug feature vectors

The feature vector for each drug contains a 10184-dimensional mono
side effect vector and a 7795-dimensional DPI vector. Due to the large
length and sparseness of the feature, the feature extraction is employed
to effectively reduce the size of the feature without losing important
information [29-31]. As in the previous study [16], the Principle
Components Analysis (PCA) is applied on mono side effects and DPIs
matrices. The minimum number of the principle components is chosen
such that 95% on variance in each matrix is retained. After dimen-
sionality reduction, the drug feature vector consists of a 503-dimen-
sional mono side effect vector and a 22-dimensional DPI vector, as
shown in Fig. 1(A).

2.3. Deep representation of drug pairs

Multiple deep neural networks, which include convolutional neural
network (CNN), two auto-encoders with self-attention mechanism and a
Siamese network [32], are used for fusing and representing drug pairs,
as shown in Fig. 1(B). Compared with simply concatenating or fusing the
information of a drug pair using only one method, the multiple deep
neural networks can capture diverse information from multi-views for
deep learning-based models to accurately predict polypharmacy side
effects. Next, we will describe them in detail.

CNN has achieved satisfactory performance in computer vision
because its convolution operation focuses on local information. In our
model, each drug is represented by a I*525-dimensional vector. We
combine two drug vectors into a 2*525-dimensional matrix and input it
into CNN, whose kernel size is 2*p. Therefore, the CNN will output a row
vector as the latent vector of the drug pair. The row vector is finally fed
into the 1-dimensional CNN to obtain the final latent vector (LF1) of the
drug pair, as shown in Fig. 1(B.I).

Auto-encoder is an unsupervised neural network model, which is
composed of an encoder and a decoder. It can learn the representation
hidden in the input data without annotations. The self-attention mech-
anism is a variant of the attention mechanism, which can focus on
important features by assigning different weights to different features.
Therefore, we append a self-attention layer before the output layer of the
encoder in two different auto-encoders, resulting in two different auto-
encoders with self-attention mechanism. A 1*1050-dimensional vector
generated by concatenating two 1*525-dimensional vectors is input into
the first auto-encoder with a self-attention mechanism (named AE1) to
perform drug fusion, as shown in Fig. 1(B.II). While the second auto-
encoder with a self-attention mechanism (named AE2) is fed with the
1*525-dimensional vector obtained by element-wise adding two drug
vectors, as shown in Fig. 1(B.III). The latent vectors of two auto-encoders
(LF2,LF3) are used as the latent vectors of the drug pair.

The Siamese network can reduce the number of parameters in the
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Fig. 1. The workflow of the proposed DeepPSE method.
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neural network by sharing weights. In our model, another two auto-
encoders are used as sub-networks of the Siamese network (named
SN), as shown in Fig. 1(B.IV). We feed two drug vectors into these two
auto-encoders of SN to obtain two feature vectors, respectively. These
two vectors are finally concatenated as the latent vector (LF4) of the
drug pair. The parameters of two auto-encoders are shared so that the
latent vector contains the information of drug pairs. Besides, Siamese
auto-encoder network takes a single drug as input rather than a drug
pair to capture drug-level features, instead of drug-pair-level features.

2.4. Latent feature fusion

We use the encoder structure of the transformer to perform latent
feature fusion. The four latent vectors (LF1,LF2,LF3,LF4) are provided
by four different methods and network structures mentioned above.
Then, we obtain the fifth feature vector (LF5) by element-wise adding
these four feature vectors. LF5 can update the parameters of different
drug fusion networks at the same time, which increases the communi-
cation between different drug fusion networks during the training pro-
cess. Finally, we concatenate these five vectors as the new feature of a
drug pair and feed this new feature into the encoder structure of the
transformer, as shown in Fig. 1(C). The encoder structure of the trans-
former is mainly composed of self-attention layer, layer Normalization,
Residual Connections and feed-forward layer.

Different feature vectors have different contributions to prediction of
polypharmacy side effects. We feed these five feature vectors repre-
sented by the concatenated vector into the multi-head attention module,
which is also called the Transformer block, to learn the weight of each
vector. The self-attention mechanism will recognize which feature vec-
tors are more important for prediction and give them large weights [33,
34]. Residual connection [35] can partially solve the gradient disap-
pearance problem. The gradient can be directly propagated through
residual connection during back propagation, which makes the speed of
back propagation and gradient update much faster. Therefore, the
network structure can be designed very deep. Layer normalization was
usually used in two scenarios: after the self-attention layer and after the
feed-forward network layer. Its purpose is to ameliorate the "cova-
riate-shift" problem by re-standardizing the calculated vector represen-
tations. It can also accelerate the convergence of neural network
parameters.

2.5. Loss function

We choose binary cross-entropy loss (BCELoss) as the loss function
for each type of polypharmacy side effect, and take their average of all
964 types as the total classification loss.

964
> o1 BCELOSSide effect i

MLoss —
088 964

(€8]

In our model, AE1, AE2 and SN are all auto-encoders, so we choose
the Mean Squared Error (MSE) loss function for them as the auxiliary
loss of classification loss. The binary cross-entropy loss is multiplied by a
corresponding classification loss weight (clw) to make the model pay
more attention to classification loss. Thus, the total loss function of the
model is as follows:

loss =clw x MLoss + MSEg; + MSEg, + MSEgy 2)
3. Results and discussion
3.1. Experimental settings

The drug pairs associated with each type of side effects are split into
training, validation, and test sets. We use 90% of drug pairs for the

training set, 5% for the validation set, and 5% for the test set. In order to
avoid the randomness of the results, we repeatedly run the procedure 5

Computers in Biology and Medicine 149 (2022) 105984

times and take the average as the final result.

It is important to emphasize that we did not perform cross-validation
on the training set. Instead, we randomly divided the whole dataset into
training set, validation set and test set. Since the randomness of the data
partition could affect the model evaluation results, we repeated the data
set partition five times. Every time we get the training set, validation set
and test set, we retrain the model on the training set, tune the param-
eters through the validation set, and test the model on the test set. We
take the average of the five test results as the final performance.

We adopt accuracy (ACC), area under the precision-recall-curve
(AUPR), area under the ROC curve (AUC), F1 score, Matthews Corre-
lation Coeffcient (MCC), Precision and Recall as evaluation metrics for
model evaluation, which are widely used in machine learning applica-
tions [36-45].

3.2. Hyper-parameter setting

The choice of hyper-parameters influences the performance of
model. Therefore, we discussed six hyper-parameters: hidden layer
dimension of auto-encoders (HLD), self-attention module layers (SML),
dropout rating (DR), learning rate (LRA), batch size (BS) and training
epochs (TE). These hyper-parameters may have a huge impact on model
performance. The hidden layer dimension of auto-encoders and self-
attention module layers determine the size and fit ability of the
model. A suitable dropout rating can prevent the model from over-
fitting. The learning rate and batch size determine whether and how
quickly the model converges. Training epochs can set a suitable training
time for the model. Therefore, we choose these six hyper-parameters for
tuning.

We tune the six hyper-parameters in the order of HLD, SML, DR, LRA,
BS, TE. While tuning one of the hyper-parameters, the other five hyper-
parameters remain unchanged. We did not use grid search to find the
optimal hyper-parameter combination. Because there are 4° parameter
combinations for 6 parameters, this search space is too large for grid
search.

We use gaussian error linear unit (GELU) activation function [46]
and Adam optimizer [47]. The dropout layer and batch normalization
[48] layers are used between the fully connected layers. The metric
scores under different configurations are shown in Fig. 2.

As shown in Fig. 2, the performance of our model does not change
greatly with the change of hyper-parameters. Almost all metric scores
vary within the range of 0.01, which also demonstrates that our model is
robust and stable. In the end, we chose 400 for HLD, 4 for SML, 0.5 for
DR, 2e-5 for LRA, 2048 for BS and 50 for TE.

3.3. Feature evaluation

In this section, we evaluate the effects of mono side effects and DPIs
on prediction performance, respectively. The results of all prediction
models are shown in Fig. 3.

As shown in Fig. 3, the prediction performance of the model using
only mono side effects are much better than that of the model using only
DPIs. This may be due to the dimensionality of DPI features is too small
after PCA dimensionality reduction, resulting in poor fitting ability of
the model. Moreover, it also shows that mono side effect is an important
kind of feature for polypharmacy side effect prediction. When using
mono side effects and DPIs for prediction, the prediction results are
slightly better than the results of using only mono side effects, but the
improvement is not too obvious. Therefore, using more kinds of features
may increase the computational cost of the model without significant
performance improvement.

Proteins can affect drug transport, absorption, pharmacological ef-
fects, toxic side effects and antibiotic drug effects. The targets of many
drugs are proteins, and drugs treat diseases by interacting with proteins.
Therefore, DPIs are important drug features for prediction of poly-
pharmacy side effects. In our model, the prediction performance of the
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Fig. 2. The metric scores under different hyper-parameters.

model using only DPIs does not work well probably because the
dimensionality of DPI features is too small after PCA dimensionality
reduction. But that does not mean that DPIs are not important.

Similar mono side effects may correspond to similar targets. There-
fore, when two drugs have similar mono side effects, the two drugs are
more likely to have the same targets, and polypharmacy side effects are
more likely to occur. Therefore, mono side effects are important features
for predicting polypharmacy side effects. Our experiments also
demonstrate that the model can achieve satisfactory results using only
mono side effects. This also demonstrates the importance of the feature
of mono side effects.

3.4. Mean squared error loss evaluation

The loss functions of our model include binary cross-entropy loss and
mean squared error loss. Since our model is a binary classification
model, binary cross-entropy loss is required during training. To verify
whether the mean squared error loss is beneficial to the training of the
model, we compare the performance of the model with and without the
mean squared error loss. The experimental results are shown in Table 1.

According to Table 1, whether or not to use MSE has little effect on
the performance of the model. There is little difference in the perfor-
mance of the model with and without MSE. Therefore, MSE does not
play a significant role in the training of our model. That is, our model
can be trained well using only binary cross-entropy loss.

3.5. The effect of multiple DNNs for deep representation of drug pairs

In this section, we evaluate the impact of different DNNs of fusing the
drug pairs on prediction of polypharmacy side effects. To compare the
difference between fusing information in a single way and fusing in
multiple ways, several models are built and the metric scores of the
models are used to evaluate their predictive power. The results of all
prediction models are shown in Table 2.

Among all drug fusions, the element-wise summation of feature
vectors of two drugs (AE2) seems to be the most informative and ach-
ieves the best performance on all evaluation metrics. It produces an AUC
of 0.920 and an AUPR of 0.911. The model which concatenates two
drugs into a 1*1050-dimensional vector (AE1) produces an AUC of
0.903, and the model with feature vectors of two drugs into the SN
produces an AUC of 0.907. The model that combines two drug features
into a 2*525-dimensional feature vector (CN) gets an AUC of 0.501. The
AUC in this drug combination method is low, and this is probably
because 2*525-dimensional feature vectors are only suitable for 2D CNN
to extract features. The combination of several different drug fusions
provides the slight improvement compared with only one single version

of drug fusions. The combination of AE2 and CN produces the best AUC
(0.930) and achieves the best performance on all evaluation metrics
among all combinations of two versions of drug fusion. The combination
of AE2, CN and SN achieves the best performance on all evaluation
metrics among all combinations of three versions of drug fusion. To sum
up, the combination of AE2 and CN performs the best on all evaluation
metrics in all combinations of drug fusions.

Overall, the performance of AE2 and SN drug fusion network is better
than that of AE1 and CN. The AE2 and SN have in common that they
both use an auto-encoder network structure and eliminate the effect of
the order of the drugs in the drug pair. It suggests that auto-encoder
maybe a good choice for extracting drug features. CNNs performed the
worst of all networks, probably because the features of drug pairs and
images have different properties. Although we can combine the features
of drug pairs into the form of images and use CNNs to extract the fea-
tures of drug pairs, due to the difference in the properties of drug pairs
and images, CNNs cannot achieve good performance.

CN extracts drug pair features through convolution kernels, and it
pays more attention to the local information of drug pair features. AE2
extracts drug pair features by directly reducing the dimensionality of the
drug pair features, so some information may be lost in the process of
dimensionality reduction. Therefore, the drug pair features extracted by
CN can be used as an effective supplement to the drug pair features
extracted by AE2. The two drug fusion networks extract the features of
drug pairs from different views, providing more information for poly-
pharmacy side effect prediction, so the CN + AE2 can achieve better
performance.

As mentioned in section 2.3, compared with fusing the information
of one drug pair using only one method, multiple views of drug fusion
can provide deep learning models with diverse information from
different perspectives, which can accurately predict polypharmacy side
effects. However, compared with using more number of drug fusion
methods, the performance of the model using two drug fusion methods
will be better. Because using too many drug fusion methods may make
the model too complex and prone to be over-fitting. Therefore, in
practical application, we need to comprehensively consider the
complexity of the problem and the fitting ability of the model to select an
appropriate model to solve the problem.

3.6. Comparison with other methods

In this section, the performance of DeepPSE is benchmarked against
5 well-known methods, which are Decagon, Concatenated drug features,
Deep Walk, DEDICOM, and RESCAL, for prediction of 964 poly-
pharmacy side effect types. The AUC and AUPR values of all methods for
964 polypharmacy side effects are shown in Table 3. Because only the
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Table 1
The performance of MDF-PSE with/without MSE.
F1 score AUPR AUC ACC MCC Precision Recall

With MSE 0.8855 0.9200 0.9302 0.8804 0.7657 0.8530 0.9250
Without MSE 0.8856 0.9198 0.9300 0.8805 0.7660 0.8532 0.9253

Table 2

The performance of MDF-PSE with different drug fusions.

F1 score AUPR AUC ACC MCC Precision Recall

AE1 0.856 0.893 0.903 0.848 0.702 0.816 0.900
AE2 0.874 0.911 0.920 0.867 0.741 0.836 0.916
SN 0.862 0.897 0.907 0.855 0.716 0.825 0.902
CN 0.673 0.521 0.501 0.526 0.097 0.515 0.971
AE1+AE2 0.870 0.906 0.917 0.863 0.733 0.833 0.910
AE1+4SN 0.868 0.903 0.915 0.862 0.730 0.833 0.906
AE1+4+CN 0.859 0.896 0.907 0.851 0.709 0.819 0.903
AE2+SN 0.883 0.917 0.928 0.878 0.761 0.848 0.921
AE2+CN 0.885 0.920 0.930 0.880 0.766 0.853 0.925
SN + CN 0.872 0.908 0.919 0.866 0.738 0.837 0.910
AE1+AE2+SN 0.875 0.908 0.920 0.868 0.742 0.837 0.917
AE1+AE2+CN 0.871 0.906 0.917 0.865 0.736 0.834 0.911
AE1+4SN + CN 0.869 0.903 0.915 0.862 0.730 0.832 0.909
AE2+SN + CN 0.885 0.918 0.929 0.879 0.764 0.849 0.924
AE1+AE2+SN + CN 0.875 0.907 0.920 0.868 0.743 0.838 0.915

Table 3 Table 4

The average of AUC, AUPR for 964 polypharmacy side efects prediction. The results for MDF-PSE and Decagon methods for 964 side effects.
Method AUC AUPR Method Flscore AUPR AUC ACC MCC Precision  Recall
MDF-PSE 0.930 0.920 MDF-PSE 0.885 0.920 0.930 0.880 0.766 0.853 0.925
Decagon 0.874 0.825 Decagon 0.850 0.825 0.874  0.831 0.685 0.771 0.950
Concatenated drug features 0.793 0.764
DeepWalk 0.761 0.737
DEDICOM 0.705 0.637 Statement
RESCAL 0.693 0.613

source code and implementation of Decagon are available, we repeat
Decagon 5 times and the obtained results are very similar to the reported
results of the Decagon method. In Table 3, we mention the average of the
obtained results for the Decagon method and the reported performance
of other methods whose source code we do not have by using Table 2 in
previous work [17]. In previous studies [16,17], only AUC and AUPR for
these methods are reported, while other metrics are not, so we can only
compare the AUC and AUPR of DeepPSE with those of these methods.
According to Table 3, DeepPSE algorithm is 5.6% and 9.5% better than
the Decagon algorithm in terms of AUROC and AUPRC, respectively.

For more evaluation, we compare DeepPSE with Decagon in detail,
and the specific results are shown in Table 4. According to Table 4,
DeepPSE outperforms about 3.5%, 4.9%, and 8.1% against Decagon
based on F-score, ACC, and MCC criteria, respectively.

4. Conclusion

We proposed a polypharmacy side effect prediction model by fusing
multi-view of deep representation of drug pairs and the attention
mechanism, and proved the effectiveness and robustness of our model
and effects of different features for polypharmacy side effect prediction.
In addition, we also proved that the performance of the model using two
drug fusion methods rather than using more drug fusion methods will be
better. Because using too many drug fusion methods may make the
model too complex and prone to be over-fitting. Experimental results
have proved that our proposed model is better than the state-of-the-art
models. Therefore, we provide a promising approach for poly-
pharmacy side effect prediction.
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