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METHODOLOGY

MDDI‑SCL: predicting multi‑type drug‑drug 
interactions via supervised contrastive learning
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Abstract 

The joint use of multiple drugs may cause unintended drug-drug interactions (DDIs) and result in adverse conse‑
quence to the patients. Accurate identification of DDI types can not only provide hints to avoid these accidental 
events, but also elaborate the underlying mechanisms by how DDIs occur. Several computational methods have been 
proposed for multi-type DDI prediction, but room remains for improvement in prediction performance. In this study, 
we propose a supervised contrastive learning based method, MDDI-SCL, implemented by three-level loss functions, 
to predict multi-type DDIs. MDDI-SCL is mainly composed of three modules: drug feature encoder and mean squared 
error loss module, drug latent feature fusion and supervised contrastive loss module, multi-type DDI prediction and 
classification loss module. The drug feature encoder and mean squared error loss module uses self-attention mecha‑
nism and autoencoder to learn drug-level latent features. The drug latent feature fusion and supervised contrastive 
loss module uses multi-scale feature fusion to learn drug pair-level latent features. The prediction and classification 
loss module predicts DDI types of each drug pair. We evaluate MDDI-SCL on three different tasks of two datasets. 
Experimental results demonstrate that MDDI-SCL achieves better or comparable performance as the state-of-the-art 
methods. Furthermore, the effectiveness of supervised contrastive learning is validated by ablation experiment, and 
the feasibility of MDDI-SCL is supported by case studies. The source codes are available at https://​github.​com/​Sheng​
gengL​in/​MDDI-​SCL.
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Introduction
The use of multiple drugs, often termed as polyphar-
macy, is a therapeutic approach to treat various complex 
diseases [1, 2]. However, polypharmacy can lead to drug-
drug interactions (DDIs), in which the pharmacologi-
cal effect of a drug is altered by another drugs [3–5]. It 
has been estimated that DDIs are associated with 30% of 
all the reported adverse drug events (ADEs) which may 

result in the majority of incidence and mortality, and 
even drug withdrawal from the market, incurring huge 
medical expense due to the stringent demands on drug 
development [6]. Therefore, it is necessary to reliably 
identify DDIs and understand their underlying mecha-
nisms, which will be beneficial for drug development in 
pharmaceutical companies and can provide important 
information on polypharmacy prescription for clinicians 
and patients. In vitro experiments and clinical trials can 
be conducted to identify DDIs, but systematic combina-
torial screening of DDI candidates from a large pool of 
drugs by experimental techniques remains challenging, 
time- and resource-consuming.

In the last decades, there are increasing availabil-
ity of scientific literature, electronic medical records, 
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population-based reports of adverse events, drug labels, 
and other related sources [7]. Researchers attempted to 
extract DDIs from scientific literature and electronic 
medical records via natural language processing (NLP) 
techniques [8, 9], infer potential DDIs by similarity-
based methods based on known DDIs [10], and predict 
DDIs by leveraging machine learning [11], network 
modelling [12, 13], and knowledge graphs [14, 15]. 
However, most of these computational methods (except 
the extraction of DDIs via NLP methods) only consider 
whether a DDI occurs or not given a pair of drugs.

To facilitate the understanding of the causal mecha-
nisms of DDIs, recent studies have developed multi-
type DDIs prediction methods to elaborate sufficient 
details beyond the chance of DDI occurrence [16]. 
The pioneering study by Ryu et  al. constructed the 
gold standard DDI dataset from DrugBank [17], which 
covers 192,284 DDIs associated with 86 DDI types 
(changes in pharmacological effects and/or the risk of 
ADEs as a result of DDI) from 191,878 drug pairs [18]. 
Then, they formulated the multi-type DDI prediction as 
a multi-label classification task and proposed DeepDDI 
by using deep neural network (DNN) based on struc-
tural information of chemical compounds for a drug 
pair. This architecture became a baseline for several 
other state-of-the-art multi-type DDI prediction meth-
ods, which improved the multi-type DDI prediction by 
incorporating various types of biological information 
such as drug targets and enzymes to represent a drug 
pair in addition to the structural information of drugs 
based on autoencoder or the encoder module of trans-
former for learning the low-dimensional latent fea-
tures and DNN algorithms for classification [19–21]. It 
should be noted that those methods represent the fea-
ture vector of a drug by the similarity profile, which is 
generated by the similarity (i.e., structural similarity) of 
a given drug against each one in the rest of drugs across 
the entire dataset. More recently, Deng et al. used few-
shot learning based on the latent features from a pair 
of drug structures to improve the prediction perfor-
mance on rare types of DDIs which have few samples 
[22]. Liu et  al. proposed the method CSMDDI, which 
first generates the embedding representations of drugs 
and DDI types and then learns a mapping function to 
bridge the drugs attributes to their embeddings to pre-
dict multi-type DDIs [23]. Feng et  al. proposed deep-
MDDI, which consists of an encoder by deep relational 
graph convolutional networks constraining with simi-
larity regularization to capture the topological features 
of DDI network and a tensor-like decoder for multi-
label prediction of DDI types [24]. Yang et al. proposed 
a substructure-aware graph neural network, utilizing a 

message-passing neural network with a novel substruc-
ture attention mechanism and a substructure-substruc-
ture interaction module for DDI prediction [25].

With the increasing availability of large biomedical 
knowledge graphs (KGs), some studies attempt to incor-
porate KG with other data (i.e., drug molecular struc-
tures) for multi-type DDI predictions via graph neural 
networks (GNNs) [26, 27]. However, there are data 
redundancy and noise in the large KGs, in which only a 
small subgraph is relevant to a prediction target [28, 29]. 
Thus, the KG-based prediction methods for DDIs are still 
at the infant stage.

Although these published methods have achieved 
some success in multi-type DDI prediction, there still 
exist some limitations. First, datasets of DDI types are 
extremely unbalanced, and these methods have poor 
performance in predicting rare types with fewer sam-
ples. Second, most methods perform well in predict-
ing unknown DDI types between known drugs, but 
they often fail to do it for new drugs. It will be useful to 
develop the new methods to resolve the problems and 
further improve the prediction performance.

Since the labelled data is limited and expensive to 
obtain, contrastive learning has recently become a popu-
lar and powerful strategy to get quality representations 
of samples in a self-supervised way. It aims at embedding 
augmented versions of the same sample close to each 
other while trying to push away embeddings from differ-
ent samples [30]. Contrastive learning is not only used 
for self-supervised tasks, but also for supervised tasks. 
Khosla et al. extend the self-supervised batch contrastive 
approach to the fully-supervised setting, allowing models 
to effectively leverage label information [31]. For super-
vised contrastive learning, the samples belonging to the 
same class are pulled together in embedding space, while 
simultaneously pushing apart samples from different 
classes [31, 32].

Contrastive learning has been successfully applied in 
the field of bioinformatics [33–38]. In this study, we pro-
pose a new method named MDDI-SCL for multi-type 
DDI prediction, which is based on Supervised Con-
trastive Learning (SCL) and three-level loss functions. 
MDDI-SCL (Fig. 1) mainly includes three parts: drug fea-
ture encoder and mean squared error (MSE) loss module, 
drug latent feature fusion and supervised contrastive loss 
module, DDI type prediction and classification loss mod-
ule. Specifically, we first input the drugs into the drug 
encoder to obtain the lower-dimensional latent features 
of each drug by MSE. Then, the latent features of two 
drugs are combined as input into the feature fusion mod-
ule to obtain the latent features of the drug pairs. Super-
vised contrastive loss can make the features of the same 
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type of DDIs more similar, and the features of DDIs from 
different types more different. Therefore, we can obtain 
features that are more powerful to classification by using 
contrastive loss in the feature fusion module. Finally, we 
input the latent features of each drug pair into the multi-
type DDI prediction module to predict DDI types, and 
update the model parameters by the classification loss.

Experimental results demonstrate that MDDI-SCL 
achieves better performance than several state-of-the-
art methods on all three tasks of two different datasets. 
Additionly, we also proved the effectiveness of supervised 
contrastive learning for multi-type DDI prediction. More 
importantly, results of the case studies validated the fea-
sibility of our method in practice.

Materials and methods
Datasets
In this study, we use two datasets with the number of 
samples at a different scale. The first dataset (Dataset1) 
is the benchmark dataset that Deng et  al. collected 

[20]. Dataset1 contains 572 drugs with 74, 528 pairwise 
DDIs, which are associated with 65 DDI types. Each 
drug in Dataset1 has four types of features: chemical 
substructures, targets, pathways and enzymes, which 
are extracted from DrugBank [39]. The second data-
set (Dataset2) is the dataset from the study of Lin et al. 
[21]. Dataset2 contains 1, 258 drugs with 323, 539 pair-
wise DDIs, which are associated with 100 DDI types. 
Each drug in Dataset2 has three types of features: sub-
structures, targets and enzymes.

Drug feature representation
Each feature type of a drug corresponds to a set of 
descriptors, so one drug can be represented by a binary 
feature vector, and its value (1 or 0) indicates the pres-
ence or absence of the corresponding element.

These feature vectors have high dimensionality with 
values of most of dimensions being 0. Therefore, we 
represent the feature vector of a drug by the similarity 

Fig. 1  The overview of the proposed MDDI-SCL method. A Drug feature encode and MSE loss module. B Drug latent feature fusion and supervised 
contrastive loss module. C Multi-type DDIs prediction and classification loss module. D Multi-head Attention (ATT) module. E Dense layer module
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profile, which is generated by the similarity of drug A 
against each one (i.e., drug B) in the rest of drugs in the 
dataset [18]. Jaccard similarity is calculated by the fol-
lowing equation,

where A and B are original bit vectors of two drugs; 
|A ∩ B| is the number of elements in the intersection of 
A and B; |A ∪ B| is the number of elements in the union 
of A and B.

Based on the Jaccard similarity, in Dataset1, each type 
feature of a drug is represented as a 572-dimensional 
vector. Therefore, each drug with four type of features is 
represented by a 4*572-dimentional vector. In the simi-
lar way, each drug is represented as a 3*1258-dimensional 
vector in Dataset2.

Drug feature encoder and mean squared error loss
The drug feature encoder module mainly includes 
multi-head self-attention layers and an autoencoder. 
The multi-head self-attention layers can focus on more 
important drug features [40, 41], and further the autoen-
coder performs feature dimensionality reduction [42, 
43]. Consequently, lower-dimensional and better drug 
representations can be obtained through the drug fea-
ture encoder module. We use mean squared error loss to 
update the parameters of the feature encoder module.

Multi‑head self‑attention mechanism and autoencoder
The detailed description of the multi-head self-atten-
tion mechanism and autoencoder is provided in the 
Additional file 1 [41]. In the model, the hidden features 
obtained through the multi-head self-attention layers are 
denoted as DA1 and DB1 for a pair of drugs (i.e., drug A 
and drug B), as shown in Fig. 1A. The encoder of autoen-
coder has two linear layers. The output vectors of the first 
linear layer are denoted as DA2 and DB2, and the output 
vectors of the second linear layer are denoted as DA3 and 
DB3.

Mean squared error
Mean squared error is commonly used as regression 
loss function, which calculates average squared differ-
ence between the observed and predicted values. In our 
model, MSE is the sum of squared distances between 
the drug feature vector and the output vector of decoder 
divided by the feature dimensionality. The MSE is calcu-
lated by following formula,

(1)Jaccard(A,B) =
|A ∩ B|

|A ∪ B|
=

|A ∩ B|

|A| + |B| − |A ∩ B|

where fea_dim is the feature dimensionality of the drug, 
vali is the value of each dimension of the drug feature 
vector, vali

~ is the value of each dimension of the output 
vector of the decoder.

Drug latent feature fusion and supervised contrastive loss
The drug latent feature fusion module mainly includes 
two sub-modules: multi-scale feature fusion and latent 
feature dimensionality reduction. The multi-scale fea-
ture fusion sub-module can simultaneously combine the 
low-level features and high-level features of a drug pair, 
and the feature dimensionality reduction sub-module 
can further fuse latent features and reduce the feature 
dimensionality. The supervised contrastive learning loss 
function is utilized to update the parameters of the drug 
latent feature fusion module.

Multi‑scale feature fusion sub‑module
A drug pair contains two drugs (i.e., drug A and drug B). 
Through the drug feature encoder module, three latent 
features of drug A are obtained: DA1, DA2, and DA3, as 
shown in Fig.  1A. Similarly, we can acquire three latent 
features of drug B: DB1, DB2, and DB3. DA1 and DB1 are 
low-level features, which usually contain more detailed 
information but also more noise [44, 45]. DA3 and DB3 
are high-level features. Normally, high-level features have 
more semantic information and less noise but lose a lot 
of detailed information [45–48]. Thus, in order to better 
integrate the advantages of low-level features and high-
level features, we concatenate DA1 and DB3, DA2 and 
DB2, DA3 and DB1 to represent a drug pair, respectively. 
Then, we input the concatenated features into the fully 
connected layer to obtain the fused drug pair features 
FD1, FD2, and FD3, as shown in Fig. 1B.

Latent feature dimension reduction sub‑module
When the neural network becomes deep, residual con-
nection can be used to avoid the problem of vanishing 
gradient [ 49 ]. In this sub-module, the output (DA3 and 
DB3) of encoder and the output (FD1, FD2 and FD3) of 
multi-scale feature fusion sub-module are concatenated 
as input into the latent feature dimensionality reduc-
tion sub-module, which mainly includes multi-head 
self-attention layers and linear layers. The number of 
neurons for each linear layer is half of the former layer. 
Multi-head self-attention has been introduced in detail 
in “Multi-head self-attention mechanism and autoen-
coder” section.   The output vector of latent feature 

(2)MSE =

∑fea_dim
i=1 (vali − val∼i )

2

fea_dim
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dimensionality reduction sub-module is named CFV, as 
shown in Fig. 1B.

Supervised contrastive loss
Contrastive learning includes unsupervised contrastive 
learning and supervised contrastive learning. The latent 
features of samples obtained by unsupervised contras-
tive learning have the following property: the features of 
samples from the same source are more similar, whereas 
the features of samples from different sources are more 
different [50]. However, one significant disadvantage 
of unsupervised contrastive learning is that it does not 
consider the correlation of features between samples 
from different sources yet belonging to the same class. 
To overcome this drawback of unsupervised contrastive 
learning, supervised contrastive learning is proposed. 
The latent features of samples obtained by supervised 
contrastive learning have the following property: the fea-
tures of samples belonging to same type are more similar, 
while the features of samples of different types are more 
different [31, 51].

Considering that the DDI type prediction task is a 
multi-class classification task, supervised contrastive 
learning is more competent for this task. Accordingly, 
our model employs supervised contrastive learning. The 
loss function of supervised comparative learning in our 
model can be calculated by the following formula,

where Nbatchsize is the number of samples in each batch, 
yi is the class label of sample i, and yj is the class label of 
sample j. Nyi is the number of samples of class yi in the 
same batch. sim is a function that measures the similar-
ity of two vectors, such as cosine similarity. CFVi, CFVj, 
CFVk are the latent feature vector, which are the out-
put vector of latent feature dimensionality reduction 
sub-module of sample i, j, and k, respectively. τ ∈ R+ is 
a scalar temperature parameter. According to the above 
formulas, in order to make the li

con loss smaller, the value 
of sim(CFVi, CFVj) will be larger. So the hidden vectors 
CFVi and CFVj must be more similar. CFVi and CFVj are 
the latent vectors of the same type samples, so the latent 
features of the same type samples are more similar.

(3)lcon =
1

Nbatchsize

Nbatchsize∑

i=1

lconi

(4)lconi =
−1

Nyi
− 1

Nbatchsize∑

j=1,j �=i,yj=yi

log
exp(sim(CFV i,CFV j)/τ )

∑Nbatchsize

k=1,k �=i exp(sim(CFV i,CFVk)/τ )

Multi‑type DDI prediction and classification loss
The module employs two fully connected layers to pre-
dict DDI types, and the number of neurons in the second 
fully connected layer is the number of DDI types. DDI 
type prediction is a multi-class classification task, and 
the sample size of each class is not balanced. Since focal 
loss can partially solve the problem of sample imbal-
ance [21], we use focal loss [52] and cross-entropy loss 
as our classification loss functions. In detail, we choose 
the cross-entropy loss as our classification loss function 
in the first one third of training steps, and apply focal loss 
as our classification loss function in the last two thirds of 
steps. Therefore, the total loss function of the model is as 
follows:

, where x is the feature vector of the drug pair, x ~ is the 
output vector of the decoder, CFV is the output vector of 
latent feature dimensionality reduction sub-module, y is 
the class label of sample, and y ~ is the predicted value of 
sample. lMSE is MSE loss function, lcon is supervised con-
trastive learning loss function and lcla is classification loss 
function. lcla is composed of the cross-entropy loss in the 
first one third of training steps and focal loss in the last 
two thirds of steps.

In order to prevent over-fitting, the label smoothing 
strategy is implemented [53]. For multi-classification 
problems, the class label vector is often converted into 
one-hot vector. However, the one-hot vector may weaken 
the generalization ability of the model and result in over-
fitting. Label smoothing uses the smoothing parameter 

to add noise to the one-hot encoding, making the model 
less confident about its predictions. Therefore, it can par-
tially solve the problem of over-fitting.

We utilize Gaussian error linear unit activation func-
tion and Radam optimizer [54]. The dropout layer and 
batch normalization layer are placed between the fully 
connected layers [55].

Results and discussion
Experimental settings of prediction tasks
This study evaluated the multi-type DDI prediction tasks 
based on three experimental settings: (i) prediction of 
unobserved interaction types between known drugs 

(5)Loss = lMSE(x, x
∼)+ lcon(CFV, y)+ lcla(y, y

∼)
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(Task1); (ii) prediction of interaction types between 
known drugs and new drugs (Task2) and (iii) prediction 
of interaction types between new drugs (Task3). New 
drugs in the corresponding task are missing in the train-
ing set, but exist in the test set.

For Task1, we apply five-fold cross-validation (5-CV) to 
DDI types and split all DDI types into five subsets. We 
train models based on DDI types in the training set, and 
then make predictions for DDI types in the test set. For 
Task2 and Task3, we apply 5-CV to drugs instead of DDI 
types. We randomly split drugs into five subsets, and 
used four of them as training drugs, leaving the remain-
ing one as test drugs. For Task2, prediction models are 
constructed on the DDI types between two training 
drugs, and then make predictions for DDI types between 
training drugs and test drugs. For Task3, prediction mod-
els are built on the DDI types between two drugs in the 
training set to predict for DDI types between two drugs 
in the test set.

For model evaluation, accuracy (ACC), area under 
the precision-recall-curve (AUPR), area under the ROC 
curve (AUC), F1 score, precision and recall are adopted 
as evaluation metrics. On highly imbalanced data sets, 
AUPR and F1 score metrics are more objective for model 
evaluation. Consequently, in the following discussion, we 
will focus on these two metrics.

Hyper‑parameters setting
The chosen of hyper-parameters influences the perfor-
mance of model. First, we discussed the settings of    six 
hyper-parameters  on affecting the prediction perfor-
mance on Task2 of Dataset1: smoothing parameter in 
the label smoothing strategy, temperature parameter in 
the contrastive learning, learning rate, batch size, train-
ing epochs and the epoch to change the cross-entropy 
loss to focal loss. Task1 is a relatively simple task, while 
Task3 is a relatively difficult task. Thus, to ensure the ver-
satility of the hyper-parameters, we chose Task2 to tune 

Fig. 2  The prediction performance of six hyper-parameters settings on Task2 of Dataset1

Fig. 3  The prediction performance of different feature fusion methods on three tasks of Dataset1 
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the hyper-parameters. For Task1 and Task3, we used the 
optimal parameters tuned on Task2. The performance 
metrics under different settings are shown in Fig. 2.

According to Fig. 2, the performance of the model does 
not change drastically as the hyper-parameters change. 
Almost all metric scores vary within the range of 0.01. 
This also illustrates the stability of our model. In the end, 
we chose 0.3 for smoothing parameter, 0.05 for tempera-
ture parameter, 2e-5 for learning rate, 512 for batch size, 
120 for training epochs and the 40th epoch to change the 
cross-entropy loss to focal loss.

The prediction effect of multi‑scale feature fusion
In the drug latent feature fusion module, we tried three 
types of feature fusion methods. The first method is the 
single-scale feature fusion, which concatenates DA1 and 
DB1, DA2 and DB2, DA3 and DB3 as three assemblies. 

The second method is multi-scale feature fusion. Corre-
spondingly, we concatenate DA1 and DB3, DA2 and DB2, 
DA3 and DB1 as three assemblies. The third method is to 
use only DA3 and DB3 without feature fusion. We com-
pared these three feature fusion methods on three tasks 
of Dataset1, as shown in Fig. 3.

On three tasks, the AUPR and AUC of the multi-scale 
feature fusion method achieved the highest scores. In 
general, the performance of the multi-scale feature fusion 
method is slightly better than the other two methods. 
Therefore, multi-scale feature fusion is incorporated into 
the final model.

The prediction effect of supervised contrastive learning
In order to verify the effectiveness of supervised contras-
tive learning, we compared the performance of the model 
with and without supervised contrastive learning on 

Table 1  The prediction effect of supervised contrastive learning on three tasks of Dataset1

ACC​ AUPR AUC​ F1 Precision Recall

Task1

 With SCL 0.9378 0.9782 0.9983 0.8755 0.8804 0.8767

 Without SCL 0.9308 0.9746 0.9982 0.8712 0.8762 0.8752

Task2

 With SCL 0.6767 0.6947 0.9634 0.5304 0.6254 0.4814

 Without SCL 0.6667 0.6765 0.9513 0.5314 0.5685 0.5177

Task3

 With SCL 0.4589 0.3938 0.9053 0.1919 0.2585 0.1678

 Without SCL 0.4553 0.3772 0.8740 0.2273 0.2571 0.2177

Fig. 4  The F1 scores and AUPR scores of 20 categories with a small sample size with/without focal loss on Task1 of Dataset1
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three tasks of Dataset1, as shown in Table 1. The model 
with supervised contrastive learning achieved better per-
formance in ACC, AUPR, and AUC on all three tasks. 
The AUPR of the model with supervised contrastive 
learning on Task2 is 0.6947 while the AUPR of the model 
without supervised contrastive learning on Task2 is 
0.6765. The AUC of the model with supervised contras-
tive learning on Task3 is 0.0313 higher than that without 
supervised contrastive learning. In general, model with 
supervised contrastive learning achieves better predic-
tion performance.

The prediction effect of focal loss
Focal loss can solve problems of imbalance in sample size 
of each category and difficulty of imbalanced classifica-
tion. Focal loss improves the classification ability of the 
model by forcing the model to focus on categories with a 
small sample size. In order to examine whether focal loss 
improves the prediction for categories with small sample 
size, we selected 20 categories with the smallest sample 
size (from DDI type46 to DDI type65) on Task1 of Data-
set1 for comparison, as shown in Fig. 4.

On categories with a small sample size, focal loss 
can boost the classification performance of the model. 
Among the 20 categories with a small sample size, the 
F1 score of the model with focal loss is higher than that 
of the model without focal loss on 19 categories. On 
DDI type 52, 63, and 64, the F1 score of the model with-
out focal loss is 0, while the F1 score of the model with 
focal loss is 0.2222, 0.5, and 0.25, respectively. Among 
the 20 categories with a small sample size, the AUPR of 
the model with focal loss is higher than the AUPR of the 
model without focal loss on 16 categories. On DDI type 
63, the AUPR of the model without focal loss is 0.0001, 
while the AUPR of the model with focal loss is 0.5334.

The prediction effect of label smoothing strategy
We verified the effectiveness of the label smoothing strat-
egy on three tasks of Dataset1. The experimental results 
are shown in Table 2.

On all three tasks, the AUPR of the model using label 
smoothing is higher than that of the model which does 
not utilize label smoothing. The AUPR of the model 
using label smoothing on Task2 is 0.0242 higher than that 
without label smoothing. The AUPR of the model using 
label smoothing on Task3 is 0.0302 higher than that with-
out label smoothing.

Comparison with state‑of‑the‑art DDI type prediction 
and baseline methods
We compared MDDI-SCL with other four state-of-the-
art DDI type prediction methods: DeepDDI [18], Lee 
et  al.’s methods [19], DDIMDL [20] and MDF-SA-DDI 
[21], and also several baseline classification methods: 
fully connected DNN, random forest (RF), k-nearest 
neighbor (KNN) and logistic regression (LR). The per-
formance comparison of all prediction models on Data-
set1 and Dataset2 is shown in Table  3 and Table  4, 
respectively.

We evaluated the performance of all prediction meth-
ods for Task1. Experimental results show that MDDI-
SCL and MDF-SA-DDI perform much better than other 
methods on Task1 on Dataset1. MDDI-SCL achieves 
the best AUPR 0.9782. On Dataset2, the performance 
of MDDI-SCL is better than other methods. The AUPR, 
F1 score and ACC of MDDI-SCL is 0.9862, 0.9321 and 
0.9516, respectively. These evaluation scores of MDDI-
SCL are higher than that of other methods.

We also compared the state-of-the-art methods on 
Task2 and Task3 of the two datasets. Experimental 
results show that our method MDDI-SCL achieves bet-
ter or comparable performance than the state-of-the-art 

Table 2  The prediction effect of label smoothing (LS) strategy on three tasks of Dataset1

ACC​ AUPR AUC​ F1 Precision Recall

Task1

 With LS 0.9378 0.9782 0.9983 0.8755 0.8804 0.8767

 Without LS 0.9377 0.9776 0.9981 0.8840 0.8718 0.9023

Task2

 With LS 0.6767 0.6947 0.9634 0.5304 0.6254 0.4814

 Without LS 0.6659 0.6705 0.9470 0.5120 0.5275 0.5243

Task3

 With LS 0.4589 0.3938 0.9053 0.1919 0.2585 0.1678

 Without LS 0.4449 0.3636 0.8723 0.1971 0.2022 0.2063
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methods on some evaluation metrics. On Dataset1, the 
AUPR of MDDI-SCL is 0.6947 and 0.3938 on Task2 and 
Task3, respectively. The AUC of MDDI-SCL is 0.6767 
and 0.4589 on Task2 and Task3, respectively. These eval-
uation scores of MDDI-SCL are higher than that of other 
methods. The F1 score of MDDI-SCL is slightly worse 
than the state-of-the-art methods. It should be empha-
sized that we used the same hyper-parameters on differ-
ent tasks and different datasets. We did not optimize the 
hyper-parameters of the model across all the datasets and 
tasks. The hyper-parameters of the deep learning model 
may affect the performance of the model, so the experi-
mental results presented here may not be the optimal 
performance of our model.

In general, our model achieves better or similar per-
formance on Task1 of both datasets compared to the 
state-of-the-art methods. Our model also achieves better 
or similar performance as the state-of-the-art methods 
on Task2 and Task3 of Dataset1. Our model performs 
slightly worse than the state-of-the-art models on Task2 
and Task3 of Dataset2. This may be explained by the fact 

that the hyper-parameters of our model are obtained on 
Dataset1. Inappropriate hyper-parameters may affect the 
performance of the model.

Case studies
The evaluation metrics have proved the effectiveness of 
our model. We conducted case studies to further validate 
the effectiveness of MDDI-SCL in practice.

We used all the DDI type samples on Dataset1 origi-
nally obtained from DrugBank [17] to train the predic-
tion model, and then predicted the drug-drug pairs that 
do not exist on Dataset1. We focused on the five most 
frequent DDI types and checked up the top 20 predic-
tions related to each type. We used the interactions 
checker tool provided by https://​go.​drugb​ank.​com/​drugs 
to verify these predictions.

Among 100 samples, 43 DDI type samples were con-
firmed, which are shown in Additional file  1: Table  S1. 
For example, the interaction between Donepezil and 
Armodafinil is predicted to cause the DDI type #0, which 

Table 3  Performance comparison with the state-of-the-art methods on three tasks of Dataset1

ACC​ AUPR AUC​ F1 Precision Recall

Task1

 MDDI-SCL 0.9378 0.9782 0.9983 0.8755 0.8804 0.8767

 MDF-SA-DDI 0.9301 0.9737 0.9989 0.8878 0.9085 0.8760

 DDIMDL 0.8852 0.9208 0.9976 0.7585 0.8471 0.7182

 Lee et al.’s methods 0.9094 0.9562 0.9961 0.8391 0.8509 0.8339

 DeepDDI 0.8371 0.8899 0.9961 0.6848 0.7275 0.6611

 DNN 0.8797 0.9134 0.9963 0.7223 0.8047 0.7027

 RF 0.7775 0.8349 0.9956 0.5936 0.7893 0.5161

 KNN 0.7214 0.7716 0.9813 0.4831 0.7174 0.4081

 LR 0.7920 0.8400 0.9960 0.5948 0.7437 0.5236

Task2

 MDDI-SCL 0.6767 0.6947 0.9634 0.5304 0.6254 0.4814

 MDF-SA-DDI 0.6633 0.6776 0.9497 0.5584 0.6547 0.5078

 DDIMDL 0.6415 0.6558 0.9799 0.4460 0.5607 0.4319

 Lee et al.’s methods 0.6405 0.6244 0.9247 0.5039 0.5388 0.4891

 DeepDDI 0.5774 0.5594 0.9575 0.3416 0.3630 0.3890

 DNN 0.6239 0.6361 0.9796 0.2997 0.4237 0.2840

Task3

 MDDI-SCL 0.4589 0.3938 0.9053 0.1919 0.2585 0.1678

 MDF-SA-DDI 0.4338 0.3873 0.8630 0.2329 0.2715 0.2226

 DDIMDL 0.4075 0.3635 0.9512 0.1590 0.2408 0.1452

 Lee et al.’s methods 0.4097 0.3184 0.8302 0.2022 0.2216 0.2027

 DeepDDI 0.3602 0.2781 0.9059 0.1373 0.1586 0.1450

 DNN 0.4087 0.3776 0.9550 0.1152 0.1836 0.1093

https://go.drugbank.com/drugs
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means that metabolism of Donepezil can be decreased 
when combined with Armodafinil.

Under the same experimental setup, 43 of the 100 
DDI samples predicted by MDDI-SCL were con-
firmed, whereas 35 of the 100 DDI samples predicted by 
MDF-SA-DDI were confirmed. This shows that MDDI-
SCL is more effective than MDF-SA-DDI in practice. In 
Additional file 1: Table S2, we list the other 57 drug pairs 
among the 100 DDI samples. These drug pairs may not 
be reported in the literature, but these DDIs are likely 
to occur when taken together, which may be helpful for 
pharmaceutical research.

Conclusions
We proposed a multi-type DDI prediction model based 
on supervised contrastive learning and three-level loss 
functions, and proved the effectiveness and robust-
ness of our model. In addition, we also proved the pre-
diction  effect of supervised contrastive learning, focal 
loss and label smoothing strategy. Experimental results 
demonstrate that our proposed model achieves better or 
comparable performance than that of the state-of-the-art 
models. The case studies were also performed to iden-
tify the new DDIs which are not included in the current 

datasets. Moreover, the effectiveness of our model is sup-
ported by case studies in practice.
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