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Abstract

Drug–target binding affinity prediction is a fundamental task for drug discovery and has been studied for decades. Most methods
follow the canonical paradigm that processes the inputs of the protein (target) and the ligand (drug) separately and then combines
them together. In this study we demonstrate, surprisingly, that a model is able to achieve even superior performance without
access to any protein-sequence-related information. Instead, a protein is characterized completely by the ligands that it interacts.
Specifically, we treat different proteins separately, which are jointly trained in a multi-head manner, so as to learn a robust
and universal representation of ligands that is generalizable across proteins. Empirical evidences show that the novel paradigm
outperforms its competitive sequence-based counterpart, with the Mean Squared Error (MSE) of 0.4261 versus 0.7612 and the R-Square
of 0.7984 versus 0.6570 compared with DeepAffinity. We also investigate the transfer learning scenario where unseen proteins are
encountered after the initial training, and the cross-dataset evaluation for prospective studies. The results reveals the robustness of
the proposed model in generalizing to unseen proteins as well as in predicting future data. Source codes and data are available at
https://github.com/huzqatpku/SAM-DTA.
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Introduction
Drug discovery is a cost-intensive and time-consuming project
[1, 2] that takes billions of dollars and decades of time to find
an effective and safe chemical molecule from the laboratory and
brings it to the market. Screening molecules with a high affinity
toward the target protein is one of the major focus in early-stage
drug discovery [3]. Drug target binding affinity (DTA) measures

the strengths of the interaction between the drug–target pair and
also sees its application in drug repurposing [4, 5] and off-target
side effect warning [6, 7]. However, experimental approaches are
confronted with the challenge of extremely large search space
of both possible ligands and proteins, heavily rely on large-scale
ligand/protein libraries and high-throughput instruments and
require great efforts and time [8]. As a result, computational

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac533/6955272 by Shanghai Jiao Tong U

niversity user on 23 January 2023



2 | Hu et al.

methods have been attracting attentions that provides alterna-
tives for the efficiency and economy.

This line of research has been studies for decades, consisting
of structure-based, sequence-based and similarity-based meth-
ods covering both bipartite interaction classification and real-
valued affinity regression tasks. Structure-based methods [3, 9–
18] act on 3D structures of proteins, ligands or their complexes.
These methods, from the point of methodology, can further be
categorized as physics-based (such as molecular docking [11, 18],
molecular dynamics simulations [14], etc.) and learning-based
[10, 12, 13, 16, 17]. Following the dogma ‘structure determines
function’, structure-based methods access the most comprehen-
sive information, backed by strong physicochemical laws and are
highly interpretable for their results. However, experimentally
validated protein structures are not always available, while those
for complexes are even more scarce [19]. As a result, additional
computational methods have to be introduced to firstly predict
the structures themselves, leading to increased uncertainty as
well as heavy time overhead [15]. Alphafold [20] largely alleviates
the problem of structural prediction of singleton proteins, but
hard cases remain, and the structural prediction of complexes is
still a challenge. In general, this extra step essentially prevents
large-scale high-throughput virtual screening, just the motivation
at the very beginning.

Sequence-based [21–27] and similarity-based [28–31] meth-
ods, however, overcome the aforementioned limitations by
simplification of the input as residual sequences, Simplified
Molecular-Input Line-Entry System (SMILES) sequences, fin-
gerprint sequences, atom-bond graphs or the derived pairwise
similarities. Sequence and similarity information can be pro-
cessed in parallel with well-developed convolutional neural
networks (CNNs), recurrent neural networks (RNNs), graph
neural networks (GNNs) and multi-layer perceptrons (MLPs) in
modern infrastructure with highly optimized efficiency [32]. More
importantly, the information is easier to acquire with lower cost,
making it possible for training models with large-scale databases
[33, 34]. Along with the development of deep learning techniques
as well as the accumulation of large databases, sequence-based
and similarity-based models are shown to be largely close to
structure-based ones in performance while retaining a high
efficiency and wide applicability [23].

One may naturally continue to ask whether an even more
compact input is feasible. For example, is it possible for a model
to work that is agnostic to protein sequences? The question
seems incredible at the first glance. After all, residual sequences
have long been seen as the most fundamental information that
identifies proteins. However, there have already been findings that
semantics of an entity can be equivalently represented by its
context apart from its intrinsic characteristics. The most well-
known example is the semantics of a linguistic word can be
well established by the words around it, in the field of nat-
ural language processing [35]. Besides, we would also like to
emphasize that the question has practical significance as well.
Compared with ligands, proteins have a far larger search-space
for their longer lengths, which in turn makes sequence-based
models prone to overfitting. As a reference, works like Alphafold
[20] utilize large-scale databases for auxiliary information, such
as multiple sequence alignments involving multiple species. By
contrast, a protein-sequence-agnostic model can focus on the
ligand representation and facilitate a universal ligand feature
extractor that is more readily to generalize across proteins.

In this study we take a step toward answering this question by
empirical demonstration, surprisingly, that a model is fully able

to achieve strongly competitive and even superior performance
without access to any protein-sequence-related information. Fur-
thermore, the sequence-agnostic model has shown its unique
advantage in transfer learning for novel proteins, as well as in
predicting future data. The key is to treat different proteins sepa-
rately but are joint trained in a cooperative multi-head manner,
which is fundamentally different from the canonical paradigm
that processes the inputs of the protein and the ligand sepa-
rately and then combines them together. We conduct a thorough
investigation and cover as comprehensive as possible the com-
mon ligand representations, network architectures and the cor-
responding hyper-parameters. Figure 1 illustrates the overview of
the proposed sequence-agnostic framework (SAM-DTA) including
singleton models as well as the multi-head training scheme.

Materials and methods
Dataset
The molecular data used in this study are derived from the
BindingDB database [34]. Ligands are firstly represented in the
SMILES format, and can be converted to the atom-bond graph
format using RDKit [36]. For the label, the negative logarithm
form of the half maximal inhibitory concentration (IC50), pIC50 =
− log10 IC50 (Molar), is used as the measure of binding affinity.
Prior to taking the logarithm, IC50 is truncated to the range of
[10−11Molar, 10−2Molar] [23]. Note also that the method can be
easily extended to other measures such as Ki, Kd, EC50, etc. We
build four datasets based on the BindingDB database according
to protein families and database timestamps as detailed next.

We start from the dataset curated by Karimi et al. [23] from
BindingDB at year 2018. Briefly, SMILES strings are retrieved from
PubChem [37] using their PubChem CIDs; protein–ligand pairs are
filtered to remove samples outside of predefined length ranges,
with incomplete information, or with IC50 as a range instead
of exact value; multiple IC50 measurements are normalized by
geometric mean [23]. On that basis, we group protein–ligand
pairs by proteins and remove those groups with <200 samples,
since too few samples are unable to give statistically reliable
and confident evaluations. Among all the remaining samples,
four classes of proteins are withheld for the transfer learning
scenario, including nuclear estrogen receptors (ER), ion chan-
nels, receptor tyrosine kinases and G-protein-coupled receptors
(GPCR), collectively denoted as BindingDB-18ex, whereas the rest
denoted as BindingDB-18. Specifically, BindingDB-18 contains 401
proteins/291,504 samples in total and BindingDB-18ex contains
another 129 proteins/91,767 samples. For each protein, we ran-
dom divide the samples into the trainset, valset and testset with
the ratio of 7:1:2. More details about the dataset, including the
statistics of min, max and quartiles, as well as the histogram,
for the distributions of the length of ligand SMILES, the length of
proteins, the number of ligands per protein and the number of
proteins per ligand, are given in the supplementary materials.

Besides BindingDB-18 and BindingDB-18ex, we build another
two datasets from BindingDB at year 2021 and 2022 for
prospective studies, denoted as BindingDB-21 and BindingDB-
22, respectively. Specifically, we take the officially released files
‘BindingDB_All_2D_2021m5.sdf.zip’ and ‘BindingDB_All_2D_2022
m5.sdf.zip’, and select samples with the protein in the set of
401 proteins of BindingDB-18. Similar curation steps are also
performed as [23] including retrieval of SMILES strings, filtration
of ligands with a SMILES string longer than 100 (only 0.67%)
and samples with IC50 as a range instead of exact value, and
normalization of multiple IC50 measurements by geometric
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Figure 1. Overview of SAM-DTA, a sequence-agnostic model for drug–target binding affinity prediction. (A) Different kinds of ligand representations
and their combinations are evaluated, including SMILES representation, graph-based representation, descriptor representation and fingerprint
representation. Different models are designed so as to conform to different input representations. (B) Singleton models that train a standalone model
for each protein separately. (C) The multi-head scheme where all proteins are jointly trained by sharing some structures among the heads.

mean. Finally, we remove samples that are already presented
in BindingDB-18. In the end, BindingDB-21 and BindingDB-22
contain 180,822 and 232,186 samples in total, respectively. As
a result, BindingDB-21 and BindingDB-22 essentially encompass
future data for proteins in BindingDB-18. Note that BindingDB-21
is a subset of BindingDB-22.

Model
Input representation
As mentioned above, sequence-related information of proteins is
not accessible to our model. The input representations of ligands
are elaborated next.

Different kinds of ligand representations and their combina-
tions are compared in this study. We start from the SMILES format
of ligands. SMILES are viewed as strings that can be processed by
character-based 1D CNNs. The alphabet of 67 SMILES characters
is extended with the special START token and STOP token that
marks the two ends of the string, and the PADDING token to
address the varied lengths. As a result, each character in a SMILES
string is represented as a 70-dimensional one-hot vector.

Besides the SMILES format, ligands are also converted to graphs
using RDKit [36] with atoms as the nodes and bonds as the edges,
so as to be processed by GNNs. The initial atom feature contains
the information including the element and degree of the atom,
the number of attached hydrogen atoms, the implicit valence, an
aromaticity indicator and so on, collectively represented as a 75-
dimensional vector, following the work from [38].

Finally, the descriptor and fingerprint representations of
ligands are also extracted and evaluated. Specifically, the
descriptor representation includes Chi0, Chi1, Chi0n–Chi4n,
Chi0v–Chi4v; the number of H-acceptors, H-donors, heteroatoms,
rotatable bonds, valence electrons, amide bonds, aromatic/satu-
rated/aliphatic rings or cycles; Molecular Operating Environment
(MOE)-type descriptors using either partial charges and surface
area contributions, Molar Refractivity (MR) contributions and
surface area contributions, LogP contributions and surface area
contributions, EState indices and surface area contributions; and
so on, in a total of 151 descriptors. The detailed list is given in
the supplementary materials. For the fingerprint representation,
we investigate four kinds of fingerprints including MACCS Keys,
RDKit fingerprints (topological fingerprints), Morgan fingerprints
and Avalon fingerprints. The dimensions of resulting vectors are
167, 1024, 1024, 512, respectively, and are concatenated to form
a 2727-dimensional vector for each ligand. The descriptor and
fingerprint representations are extracted using RDKit [36].

Singleton model
A natural way to the sequence-agnostic paradigm is to train a
standalone model for each protein separately. Note that different
network architectures should be, respectively, designed so as to
conform to different input representations.

For the SMILES-based ligand representation, we build a
character-level 1D CNN. The input SMILES string is firstly inserted
with the START and STOP token at the two ends, and padded to
the maximal length with the PADDING token, to address the issue
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Figure 2. The architecture of the dilated parallel residual block. The block assembles multi-scale features from 1D convolutional layers with different
dilation rates, equipped with the residual link.

of varied lengths. After that, each character in the padded string is
represented as a 70-dimensional one-hot vector and embedded to
a w/2-dimensional real-valued vector with the embedding layer.
A stack of n dilated parallel residual blocks [39] with w output
features is further applied on top of the embedding layer. As
illustrated in Figure 2, the block follows the “division-processing-
fusion” pipeline that assembles multi-scale features from 1D
convolutional layers with different dilation rates, equipped with
the residual link [40]. The resulting feature is aggregated in
the character dimension by a global average pooling layer, to
arrive at an overall SMILES-based representation for the ligand.
Note that this representation can be optionally combined with
the descriptor or fingerprint representation by concatenation to
explore the complementariness of such representations. Finally,
the representation, whether SMILES-based or combined with
other representation, is processed by a multi-layer perceptron
(MLP) module to give the affinity prediction. The MLP is composed
of a stack of two fully connected (FC) layers with ReLU and
dropout layers in-between. The first FC layer outputs features
of dimension h and the second outputs a real-value for affinity
prediction for the protein. Different values of w, n and h, as well
as other CNN variants including ResNet [40] and DenseNet [41],

and RNNs including LSTM [42] and GRU [43], are investigated in
experiments.

For the graph-based ligand representation, GNNs are developed
to progressively refine the atom features with the information
from the neighbors. Given initial atom features described above,
GNNs can be generally formulated as

xl+1
i = Update

(
xl

i, Aggregatej∈N (i)

(
Message(xl

i, xl
j)
))

(1)

where xl
i denotes the feature of i-th atom after l GNN layers and x0

i

the initial atom feature, N (i) denotes the neighbors of i-th atom,
i.e. the atoms that have a chemical bond with i-th atom. ‘Update’,
‘Aggregate’ and ‘Message’ are three differentiable functions
that define the particular GNN architectural variant, and the
‘Aggregate’ function is also required to be invariant to atom per-
mutations. In this study we perform a comprehensive comparison
of different GNN architectures including GCN [44], GraphSAGE
[45], Set2SetNet [46], GlobalAttentionNet [47], SAGPool [48, 49],
TopK [48, 50], SortPool [51], JumpingKnowledge [52], Graclus [53].
After a total of L GNN layers with W output features each, the
resulting atom features are also aggregated by average across

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac533/6955272 by Shanghai Jiao Tong U

niversity user on 23 January 2023



SAM-DTA for drug–target affinity prediction | 5

atoms to give the overall graph-based ligand representation.
Finally, this representation is similarly processed by an MLP
module that outputs the affinity prediction. For a fair comparison,
the MLP is consistent with the one used in the SMILES-based CNN,
with hidden size 3072; values of L = 3 and W = 1024 are also
chosen to keep similar capacity with the SMILES-based CNN.

Multi-head model
Singleton models are unable to take full advantage of data from
other proteins. This has two consequences: feature extractor
loses the opportunity to learn more generic patterns for better
performance; every time a novel protein is met, the model has to
be trained totally from scratch. It is thus less optimal either from
the perspective of performance or usability. As a result, we further
develop a multi-head scheme with the aforementioned singleton
models as the building blocks.

The key idea of the multi-head scheme is to enable across-head
mutual boosting by sharing some structures among the heads. In
this study, all but the last FC layer is shared among the heads.
Despite a seemingly minor modification, the multi-head scheme
has a far different indication from the singleton manner. Unlike
singleton models each having its own ligand representation space,
the multi-head scheme has a common ligand representation
space. Consequently, the learned ligand representation is univer-
sal, meaning that it is applicable across proteins and can readily
be seen as an independent attribute of the ligand that does not
depend on any specific protein.

Training and evaluation
All the aforementioned models are trained with the mean squared
error (MSE) loss function,

Loss = 1
B

B∑
i=1

(
yi − ŷi

)2 (2)

where yi and ŷi are observed and predicted pIC50 values, respec-
tively; B is the batchsize and set to 10. For singleton models, each
model is trained independently, but the hyper-parameters are kept
the same to avoid the ad hoc design; in the multi-head scheme,
however, one unified model is trained for all the proteins: for each
round we iterate through all the proteins in order, group every
64 proteins (except the last containing all the rest) and sum the
losses for one optimization step (due to GPU memory constraints,
it is not feasible to conduct one optimization step for all the
proteins each with batchsize B = 10). The optimizer is Adam [54]
and weight decay is set to 0.0001. All models are implemented
using the PyTorch framework [32] and GNNs are additionally using
the PyTorch Geometric library [55].

To evaluate the performance of the models, the predicted pIC50
values are compared with the observed values using both the MSE
and the Pearson correlation coefficient (R2) metrics,

MSE = 1
N

N∑
i=1

(
yi − ŷi

)2 (3)

R2 =
(∑N

i=1(yi − my)(ŷi − mŷ)
)2

∑N
i=1(yi − my)2

∑N
i=1(ŷi − mŷ)

2
, (4)

where yi and ŷi are observed and predicted pIC50 values, respec-
tively; N is the total number of samples; my = ∑N

i=1 yi/N and
mŷ = ∑N

i=1 ŷi/N are the mean value of yi and ŷi, respectively.

Note that all samples are aggregated together for evaluation (i.e.
micro-average), regardless of whether for singleton models or in
the multi-head scheme.

Results and discussion
Comparison with competing methods
We compare the proposed SAM-DTA model with six representa-
tive methods from three aspects, including the strong sequence-
based counterpart DeepAffinity [23], GraphDTA [56], MDeePred
[57], MGraphDTA [58] from literature, the head-to-head variant
Sequence-Aware and the singleton version of SAM-DTA. Deep-
Affinity unifies RNN and CNN with attention mechanism for
the ligand and protein feature extraction, and the features are
combined by concatenation for affinity prediction, in an end-
to-end manner. Notably, the feature extractors of both ligands
and proteins are pretrained in large databases. We therefore
also take the pretrained parameters and finetune on our dataset
with the officially released codes. GraphDTA, on the other hand,
utilizes the GNN to extract the feature of ligands, which is also
combined with the protein feature extracted by the CNN for
affinity prediction. MGraphDTA further extends the architecture
of GraphDTA by their proposed multi-scale GNN and CNN, aim-
ing to capture the local and global structure of ligands. Finally,
MDeePred focuses their attention on the protein featurization and
incorporates multiple types of protein features such as sequence,
structural, evolutionary and physicochemical properties, jointly
processed by a CNN and concatenated with the ligand feature by
a MLP on top of molecular fingerprints for affinity prediction. In
summary, the four competing methods from literature are able
to cover commonly utilized architectures as well as a variety of
featurizations.

Besides the off-the-shelf methods from literature, we also man-
ually equip the proposed SAM-DTA with a dedicated branch for
protein feature extraction, the resulting feature of which is con-
catenated with ligand features for affinity prediction. Note that
the structure of the protein branch mimics that of the ligand, with
the same number of dilated parallel residual blocks (Figure 2).
In this way, we perform a head-to-head comparison between
sequence-based and sequence-agnostic methods. This variant is
therefore called Sequence-Aware hereinafter.

Finally, we also compare SAM-DTA (multi-head) with its single-
ton version. Singleton models are trained independently, and the
predictions are assembled for evaluation. Based on the ablation
studies to be described below, we choose the ligand representation
combinations of SMILES and fingerprints, processed by character-
level 1D CNN followed by MLP. The architecture is kept the same
for both the singleton version and the multi-head version for a
fair comparison.

All the models are trained and evaluated on the BindingDB-
18 dataset described before, with the same trainset/valset/testset
split. Table 1 presents the results, where the standard error is
estimated by bootstrapping over 10 times. It can be seen that
sequence-agnostic methods, either singleton or multi-head, out-
perform the sequence-based counterpart, which demonstrates
the effectiveness of the proposed sequence-agnostic scheme. Note
also that Sequence-Aware performs far worse than DeepAffin-
ity, GraphDTA, MDeePred and MGraphDTA, which rules out the
possibility that the performance superiority is derived from the
particular network architecture or ligand representation. Within
the sequence-agnostic family; however, the multi-head way gives
even more accurate predictions than that of singleton. Given that
singleton models collectively contain more parameters and thus
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Table 1. Performance comparison of the proposed sequence-agnostic model (SAM-DTA) against six representative methods from
different aspects, including the strong sequence-based counterpart DeepAffinity, GraphDTA, MDeePred, MGraphDTA from literature,
the head-to-head variant Sequence-Aware and the singleton version of SAM-DTA. The standard error is estimated by bootstrapping
over 10 times

Model Trainset MSE Trainset R2 Valset MSE Valset R2 Testset MSE Testset R2

Sequence-Aware 1.0383 ± 0.0020 0.5134 ± 0.0015 1.1225 ± 0.0093 0.4744 ± 0.0033 1.0958 ± 0.0057 0.4805 ± 0.0036
DeepAffinity 0.2945 ± 0.0013 0.8670 ± 0.0005 0.7905 ± 0.0088 0.6490 ± 0.0032 0.7612 ± 0.0064 0.6570 ± 0.0026
GraghDTA 0.1870 ± 0.0005 0.9570 ± 0.0002 0.5404 ± 0.0049 0.8635 ± 0.0028 0.5413 ± 0.0031 0.7417 ± 0.0023
MDeePred 0.1522 ± 0.0006 0.9297 ± 0.0003 0.5378 ± 0.0057 0.7502 ± 0.0023 0.5393 ± 0.0040 0.7471 ± 0.0017
MGraphDTA 0.0288 ± 0.0002 0.9566 ± 0.0001 0.5283 ± 0.0072 0.7229 ± 0.0040 0.5312 ± 0.0038 0.7116 ± 0.0018
Sequence-Agnostic (singleton) 0.0010 ± 0.0000 0.9995 ± 0.0000 0.4633 ± 0.0056 0.7826 ± 0.0022 0.4678 ± 0.0053 0.7781 ± 0.0023
Sequence-Agnostic (multi-head) 0.0055 ± 0.0000 0.9980 ± 0.0000 0.4233 ± 0.0042 0.8019 ± 0.0026 0.4261 ± 0.0032 0.7984 ± 0.0019

have better representation capacity (also shown by lower trainset
errors), the result indicates that parameter-sharing in the multi-
head training indeed realizes the across-head mutual boosting
and learns robust and generalizable ligand features for different
proteins.

We also illustrate best-performing and worst-performing pre-
dictions as shown in Figure 3(A–B) and (C–D), respectively. Our
model demonstrates the ability of handling large value variations
(Figure 3A) and non-normal value distributions (Figure 3B) but
also maintains reasonable performance in worst cases (Figure 3C
and B). One may wonder whether performance has a correlation
to the sample capacity of the protein. To this end, we collect the
MSE and R-Square value for each individual protein with respect
to the number of ligands in the dataset for that protein, as shown
in Figure 4A and B. However, the correlations are not significant,
as proteins with most ligand samples (thus top sample capacities)
are not necessarily the best-performing ones.

Comparison of different ligand representations
We next perform ablation studies to investigate the best set-
tings for the proposed model. Firstly, different ligand representa-
tions and their combinations are compared. As shown in Table 2,
we compare the SMILES-based and graph-based representations,
optionally combined with the fingerprint and descriptor features.
Note that different representations are processed by correspond-
ing models, as elaborated in the Model Section.

It can be observed from Table 2 that the SMILES-based repre-
sentation performs consistently better than the graph-based ones,
when processed by RNNs or the dilated parallel residual CNN. We
explore multiple GNN variants including GCN [44], GraphSAGE
[45], Set2SetNet [46], GlobalAttentionNet [47], SAGPool [48, 49],
TopK [48, 50], SortPool [51], JumpingKnowledge [52], Graclus [53].
These architectures differ in the message passing mechanism as
defining different ‘Update’, ‘Aggregate’ and ‘Message’ functions.
However, performances are comparable, indicating that it is not
sensitive to the specific GNN architecture. Considering that GNNs
have been shown the effectiveness in plenty of drug-related tasks
including ADMET prediction [59–61] and also the sequence-based
models of affinity prediction [62, 63], we suspect the performance
gap between GNNs and CNNs may result from their different
ability in handing large number of multi-heads (e.g. 401 proteins
in this study).

With the SMILES-based representation, however, the dilated
parallel residual CNN outperforms both other CNN variants
as well as RNN architectures. Note also that the two RNN
models (LSTM [42] and GRU [43]) perform consistently better
than commonly used CNN structures including ResNet [40] and
DenseNet [41], showing the advantage of RNNs in modeling long-
term correlations. This is also what is explored by the multi-scale

information fusion in the dilated parallel residual CNN. Compared
with other variants, the dilated parallel residual CNN integrates
the long-term modeling ability of RNNs with the optimization
advantage of CNNs and demonstrates superior performance with
both lower training errors and better testset generalizability.

It is also worthy noting that combining fingerprint or descriptor
representations is beneficial to the SMILES-based representation.
Moreover, the fingerprint representation offers more improve-
ments than descriptors, indicating that fingerprints contain more
information that is complementary to that extracted by deep
neural networks. However, the benefits are addictive on top of
the other. As a result, practitioners may make their own tradeoffs
between performance and efficiency in the selection and com-
bination of ligand representations. In this work, we choose the
SMILES-based representation combined with fingerprints only,
saving the inference time for computing the descriptors though
with the performance slightly lower than the optimum.

Comparison of different architectures
We then focus on the SMILES-based ligand representation and
further compare the architectural settings related to both the
CNN architecture as well as the following MLP module. These
hyper-parameters are searched under the SMILES represen-
tation alone and directly applied to the SMILES+fingerprint
setting.

For the CNN architecture, different net depth and width are
investigated. Specifically, we compare different number of dilated
parallel residual blocks (the depth, n) as well as that of output
features in each of the blocks (the width, w). Table 3 shows the
experimental results. For a fixed net depth, it has been observed
clear improvements along with the expanded net width. When
the net width is small, the model exhibits a state of underfitting,
with relatively high errors even in the trainset; however, training
losses are gradually reduced along with the expanded net width,
which contributes the most to the improved performance. On the
other hand, improvements are not significant when net depth is
increased. We speculate that although a deeper network brings
more powerful representation capacity, it will also encounter
more severe optimization issues (e.g. gradient diminishing). As a
result, in terms of the sequence-agnostic affinity prediction task,
a wider network should be preferred than a deeper one. In this
study, we finally choose a net width of w = 1024 with a medium
net depth of d = 3 blocks.

We also explore the effect of hidden size (h) of the MLP module
on the performance. We start from the hidden size of 64 and
gradually increase up to 4096 that is four times the output feature
size of the preceding CNN module. As shown in Table 4, a larger
hidden size immediately leads to a less training error, whereas
testset performance is first rising and then reaches the plateau. In
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Figure 3. Scatter plots of best-performing [(A) THRB, UniProt ID: P10828, #139/401 and (B) BRD3, UniProt ID: Q15059, #369/401] and worst-performance
[(C) IDO1, UniProt ID: P14902, #229/401 and [(D) Adora1, UniProt ID: P25099, #278/401] proteins by SAM-DTA. Each dot represents a protein–ligand pair
with x-axis the predicted pIC50 and y-axis the observed pIC50; the red dash line represents the ideal y=x relation.

fact, training loss is already low enough that the model has arrived
at a state of sufficient fitting, when the hidden size is larger than
512. This, from another side, reveals the representation power of
the preceding CNN module that relieve the burden upon the MLP
module. The performance has thereby saturated.

Investigation of the transfer learning scenario
Until now we discuss the scenario where the concerned proteins
are known beforehand, and models are trained on the correspond-
ing data followed by the immediate testing. However, there are
also circumstances that proteins of interest come up sequentially
that cannot be perfectly planned at the very beginning. For exam-
ple, when the model is trained on an initial database and shared
in the community, one may take the model and utilize in his/her

own projects. This scenario, which we call the transfer learning
scenario, is also investigated in this study. Note that the main
difference and also the challenge lies at the limitation that the
preceding database is not, but only the trained model is accessible
to the later phase, which is often the actual conditions in real
practice. For the sake of simplification, we consider the case that
only one transfer learning phase occur after the initial learning
phase. More transfer learning phases can be similarly processed
in a one-by-one manner.

To tackle the task, two strategies are investigated and com-
pared. The first one is to view the given model as pretrained
parameters, equip it with randomly-initialized last layer, and
finetune the whole model on the new data. We also compare to
finetune independently for each protein (singleton) against col-
lectively in a multi-head manner. Another way, however, regards
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Figure 4. Correlation analysis of the per-protein performance with respect to its sample capacity, in the regular training scenario (A) and (B) and the
transfer learning scenario (C) and (D). Each dot represents a protein. Performance is assessed by MSE(A) and (C) and Pearson correlation coefficient [R2,
(B) and (D)] in x-axis, respectively, while sample capacity is measured by the number of ligands for that protein.

the given model as feature extractor, and gets the universal ligand
feature from outputs of the last-but-one layer, which is then
utilized to predict for the novel proteins, with regressors includ-
ing MLP, random forest and RBF-kernel support vector machine
regressor (RBF-SVR). For comparison, training from scratch is also
conducted to serve as the baseline.

Table 5 presents the results. For the same strategy, the pro-
posed sequence-agnostic model, in either singleton or multi-head
manner, performs better than Sequence-Aware, DeepAffinity [23],
GraphDTA [56], MDeePred [58] and MGraphDTA [57] with a clear

margin, again confirming the effectiveness of the sequence-
agnostic scheme, while the multi-head way consistently out-
performs the singleton one. We also analyze the performance
in detail by violin plots across proteins as shown in Figure 5A–
C at initial training (401 proteins), training from scratch (129
proteins) and finetuning (129 proteins), respectively. Specifically,
we group protein–ligand pairs by their proteins, and then for each
protein calculate the MSE for that protein, the results of which are
aggregated and finally the violin plot is drawn by the seaborn [64]
library. Clear margins are observed for centers of violin plots (the
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Table 2. Performance comparison of different ligand representations and their combinations

Representation Network
+Descr
iptors?

+Finger
prints? Trainset MSE Trainset R2 Valset MSE Valset R2 Testset MSE Testset R2

GCN 0.5097 0.7599 0.6933 0.6730 0.6831 0.6735
GraphSAGE 0.5094 0.7612 0.6739 0.6825 0.6622 0.6838
Set2SetNet 0.0754 0.9646 0.6587 0.6954 0.6619 0.6906
GlobalAtten-
tionNet

0.4781 0.7746 0.6543 0.6914 0.6517 0.6886

Graph SAGPool 0.4694 0.7795 0.6576 0.6899 0.6414 0.6935
TopK 0.4708 0.7792 0.6521 0.6926 0.6394 0.6946
SortPool 0.1792 0.9174 0.649 0.694 0.6357 0.6964
Jumping-
Knowledge

0.4746 0.7777 0.6462 0.6955 0.6344 0.6971

Graclus 0.4416 0.7928 0.6212 0.7072 0.6099 0.7086

ResNet 0.0262 0.9878 0.6915 0.6755 0.6809 0.6767
DenseNet 0.0429 0.9801 0.6675 0.6873 0.6568 0.6881
GRU 0.0321 0.9911 0.5540 0.7506 0.5533 0.7487

SMILES LSTM 0.0210 0.9917 0.5433 0.7496 0.5454 0.7467
Dilated
Parallel
Residual
CNN

0.0101 0.9952 0.4974 0.7663 0.4975 0.7636

� 0.0081 0.9962 0.4802 0.7749 0.4880 0.7691
� 0.0055 0.9980 0.4233 0.8019 0.4261 0.7984

� � 0.0054 0.9978 0.4213 0.8027 0.4231 0.7996

Table 3. Performance comparison of different net depth and width for the CNN architecture under the SMILES ligand representation.
The depth is measured by the number of dilated parallel residual blocks, whereas the width is measured by the number of output
features for the block

Representation Net depth Net width Trainset MSE Trainset R2 Valset MSE Valset R2 Testset MSE Testset R2

2 blocks 256 0.0870 0.9609 0.6421 0.7091 0.6413 0.7065
512 0.0338 0.9841 0.5736 0.7352 0.5770 0.7308
1024 0.0136 0.9936 0.5144 0.7593 0.5181 0.7551

3 blocks 256 0.0772 0.9666 0.6459 0.7095 0.6438 0.7077
SMILES 512 0.0247 0.9885 0.5544 0.7424 0.5625 0.7362

1024 0.0101 0.9952 0.4974 0.7663 0.4975 0.7636

4 blocks 256 0.0660 0.9703 0.6447 0.7066 0.6409 0.7058
512 0.0201 0.9906 0.5468 0.7448 0.5489 0.7413
1024 0.0096 0.9955 0.4852 0.7715 0.4845 0.7691

Table 4. Performance comparison of different hidden sizes for the MLP module

Representation

MLP
hidden
size

Trainset
MSE

Trainset
R2

Valset
MSE

Valset
R2

Testset
MSE

Testset
R2

64 0.0477 0.9788 0.5463 0.7425 0.5408 0.7419
128 0.0331 0.9856 0.5297 0.7507 0.5201 0.7523
256 0.0226 0.9898 0.5102 0.7598 0.5134 0.7553

SMILES 512 0.0176 0.9918 0.5055 0.7617 0.5034 0.7599
1024 0.0151 0.9930 0.4976 0.7656 0.4957 0.7637
2048 0.0120 0.9943 0.4955 0.7668 0.4970 0.7634
3072 0.0101 0.9952 0.4974 0.7663 0.4975 0.7636
4096 0.0088 0.9959 0.4934 0.7683 0.4984 0.7634

median) across the seven models, indicating that the performance
gap is structural but not affected by outliers or corner cases.

Across the strategies, on the other hand, the phenomenon is
different for different methods. The proposed SAM-DTA enjoys
the benefits from the pretrained parameters while DeepAffinity
and Sequence-Aware do not (also by comparison of Figure 5B
and C). This essentially reveals that incorporating sequence

information does not necessarily help generalize to novel proteins,
but a universal ligand feature does.

Similar to the regular training scenario, we also investigate
the correlation of the per-protein performance with respect to
the number of ligands for that protein, i.e. the sample capacity,
in the transfer learning scenario. As shown in Figure 4C and D),
also similar to that in the regular training scenario, no significant
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Table 5. Performance comparison in the transfer learning scenario of the proposed sequence-agnostic model (SAM-DTA) against six
competing methods, with strategies of training from scratch, finetuning or as feature extractor with different following regressors

Strategy Model Trainset MSE Trainset R2 Valset MSE Valset R2 Testset MSE Testset R2

Training from scratch Sequence-Aware 0.4602 0.7306 0.7323 0.5615 0.7403 0.5609
DeepAffinity 0.3402 0.8110 0.8277 0.5280 0.8170 0.5420
GraghDTA 0.1358 0.9605 0.5377 0.8237 0.5382 0.6820
MDeePred 0.1556 0.9155 0.5644 0.6694 0.5573 0.6757
MGraphDTA 0.0164 0.9477 0.5601 0.6243 0.5661 0.6216
Sequence-Agnostic (singleton) 0.0016 0.9991 0.4848 0.7107 0.4883 0.7129
Sequence-Agnostic
(multi-head)

0.0063 0.9973 0.4532 0.7298 0.4618 0.7291

Pretrained parameters
& finetuning

Sequence-Aware 0.7363 0.5952 0.8842 0.4964 0.8778 0.5023
DeepAffinity 0.8805 0.4740 0.9402 0.4340 0.9140 0.4570
GraghDTA 0.1068 0.9707 0.5228 0.8285 0.5285 0.6865
MDeePred 0.1092 0.9394 0.5241 0.6901 0.5187 0.6965
MGraphDTA 0.0125 0.9462 0.5236 0.6673 0.5192 0.6740
Sequence-Agnostic (singleton) 0.0006 0.9997 0.4775 0.7140 0.4812 0.7158
Sequence-Agnostic
(multi-head)

0.0044 0.9979 0.4471 0.7320 0.4486 0.7348

Feature extractor &
MLP

Sequence-Aware 1.1814 0.2995 1.2268 0.2722 1.2239 0.2819
DeepAffinity 1.3157 0.2708 1.3532 0.2515 1.3384 0.2648
GraghDTA 0.0216 0.9871 1.3731 0.3718 1.3701 0.3739
MDeePred 0.1065 0.9365 1.6693 0.2307 1.6318 0.2372
MGraphDTA 0.7684 0.5433 1.2549 0.2972 1.2226 0.3176
Sequence-Agnostic (singleton) 0.0227 0.9865 0.5715 0.6693 0.5889 0.6653

Feature extractor &
random forest

Sequence-Aware 0.1760 0.9158 1.1002 0.3491 1.0753 0.3694
DeepAffinity 0.1282 0.9473 0.8987 0.4588 0.8928 0.4698
GraghDTA 0.1108 0.9552 0.7775 0.5348 0.7733 0.5444
MDeePred 0.1353 0.9483 0.9537 0.4267 0.9470 0.4385
MGraphDTA 0.1426 0.9438 1.0258 0.3825 1.0218 0.3928
Sequence-Agnostic (singleton) 0.0803 0.9658 0.5697 0.6646 0.5693 0.6701

Feature extractor &
RBF-SVR

Sequence-Aware 1.1340 0.3262 1.1648 0.3049 1.1530 0.3190
DeepAffinity 1.1006 0.3430 1.1233 0.3244 1.1069 0.3425
GraghDTA 0.4606 0.7330 0.7519 0.5473 0.7484 0.5557
MDeePred 0.7243 0.5715 1.0369 0.3788 1.0349 0.3873
MGraphDTA 1.0114 0.3968 1.1001 0.3417 1.0922 0.3543
Sequence-Agnostic (singleton) 0.3117 0.8205 0.5187 0.6895 0.5192 0.6932

correlations is observed, again confirming that sample capacity is
not the main factor that affects per-protein performance.

For singleton learning, i.e. assuming only one protein in each
transfer learning phase, we see that the finetuning strategy
performs slightly better than ‘feature extractor & regressor’
strategies, but the gap is small, especially for the relatively better-
performing ‘feature extractor & RBF-SVR’, also illustrated in
the violin plot Figure 5D. Considering that ‘feature extractor &
regressor’ strategies are nearly negligible in additional training
costs, this provides an alternative for the usability. In comparison,
for cases that multiple proteins show up simultaneously in
the transfer learning phase, a multi-head finetuning gives even
more accurate predictions, since ‘feature extractor & regressor’
strategies cannot take advantage of multi-head training due to
fixed ligand features.

We further explore how the number of proteins in the initial
training phase will affect the performance in the transfer
learning phase. To this end, we prepare a series of subsets of
BindingDB-18 by randomly drawing 100, 200 and 300 proteins
without replacement, and then train models on these subsets and
evaluate in the same transfer learning dataset BindingDB-18ex.
As shown in Table 6, the ‘pretrained parameters & finetuning’,

the ‘feature extractor & random forest’ and ‘feature extractor
& RBF-SVR’ strategies demonstrate better performance with
more initial proteins, indicating that more proteins in the initial
training improve the generalizability of the model. However, for
the ‘feature extractor & MLP’ strategy, the gain is not significant.
Although models with whole-set initial training performs best,
the gap is small, and performance does not necessarily get better
with more initial proteins. Considering the training losses are
indeed declining, we speculate overfitting may account for the
test error saturation.

Cross-dataset evaluations
Besides the transfer learning for novel proteins, we also assess
the generalizability of the proposed SAM-DTA by cross-dataset
evaluations. To this end, we take snapshots of the BindingDB
dataset at three different time points, namely the year 2018, 2021
and 2022. For the year 2021 and 2022, we take the newly recorded
samples compared with year 2018 and constitute the datasets
termed BindingDB-21, BindingDB-22. Specifically, BindingDB-21
and BindingDB-22 contain 180,822 and 232,186 samples in total,
respectively. The datasets are utilized in two ways. Firstly, we treat
the datasets as blind testsets and directly evaluate the model that
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Figure 5. Violin plot analysis across proteins, where protein–ligand pairs are grouped according to proteins and MSE is calculated for each protein. The
proposed sequence-agnostic model (SAM-DTA) is compared with six competing models for (A) initial training (401 proteins), (B) training from scratch
(129 proteins), (C) finetuning (129 proteins). Different strategies are also compared for SAM-DTA in (D) singleton learning scenario, assuming only one
protein in each transfer learning phase.

is trained on the trainset of BindingDB-18. This way essentially
performs the prospective studies. Another way, however, is to
take the datasets as additional trainsets that is merged with the
trainset of BindingDB-18, whereas the valset and testset stay the
same. In this way, we can see how the number of training samples
will affect the performance given the same testset.

Table 7 presents the results. For the case that BindingDB-21/22
are utilized as blind testsets, the proposed multi-head sequence-
agnostic model (SAM-DTA) outperforms DeepAffinity, Sequence-
Aware, as well as the singleton version with clear margins.

Notably, performance degradations occur for all the four models
including SAM-DTA and to find out the reason, we also analyze
the violin plots for SAM-DTA between the three testsets. Figure 6
shows the violin plots of different views across (A) proteins and
(B) ligands, where protein–ligand pairs are grouped according to
proteins/ligands and MSE is calculated for each protein/ligand,
respectively (truncated at MSE 5.0). It can be seen that majority
of proteins/ligands in BindingDB-21/22 has a performance similar
to that in BindingDB-18, but more corner cases have appeared.
We think in this case the SAM-DTA model mainly suffers from
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Table 6. Studies of how the number of proteins in the initial training affects the performance in the transfer learning phase

Strategy
No. of proteins in
initial training

No. of proteins in
transfer learning Trainset MSE Trainset R2 Valset MSE Valset R2 Testset MSE Testset R2

Pretrained
parameters &
finetuning

100 129 0.0047 0.9977 0.4495 0.7311 0.4558 0.7312
200 129 0.0046 0.9976 0.4473 0.7319 0.4521 0.7330
300 129 0.0044 0.9978 0.4488 0.7313 0.4520 0.7329
400 129 0.0044 0.9979 0.4471 0.7320 0.4486 0.7348

Feature extractor
& MLP

100 129 0.0476 0.9717 0.5915 0.6588 0.5998 0.6580
200 129 0.0286 0.9830 0.5905 0.6585 0.6011 0.6586
300 129 0.0280 0.9834 0.5987 0.6567 0.6046 0.6589
401 129 0.0227 0.9865 0.5715 0.6693 0.5889 0.6653

Feature extractor
& random forest

100 129 0.0851 0.9646 0.6065 0.6430 0.6012 0.6519
200 129 0.0823 0.9653 0.5860 0.6544 0.5808 0.6631
300 129 0.0820 0.9655 0.5864 0.6547 0.5793 0.6648
401 129 0.0803 0.9658 0.5697 0.6646 0.5693 0.6701

Feature extractor
& RBF-SVR

100 129 0.3622 0.7909 0.5547 0.6678 0.5526 0.6737
200 129 0.3613 0.7911 0.5465 0.6729 0.5462 0.6773
300 129 0.3029 0.8260 0.5246 0.6857 0.5231 0.6909
401 129 0.3117 0.8205 0.5187 0.6895 0.5192 0.6932

Table 7. Results of cross-dataset evaluations. BindingDB-21/22 are utilized either as blind testsets, or as additional trainsets

Trainset Valset Testset Model
Trainset
MSE

Trainset
R2

Valset
MSE

Valset
R2

Testset
MSE

Testset
R2

BindingDB-18
trainset

BindingDB-18
valset

BindingDB-21 Sequence-Aware 1.0383 0.5134 1.1225 0.4744 1.8936 0.2021
DeepAffinity 0.2945 0.8670 0.7905 0.6490 2.0810 0.1720
Sequence-Agnostic
(singleton)

0.0010 0.9995 0.4633 0.7826 1.3905 0.5247

Sequence-Agnostic
(multi-head)

0.0055 0.9980 0.4233 0.8019 1.1548 0.5176

BindingDB-18
trainset

BindingDB-18
valset

BindingDB-22 Sequence-Aware 1.0383 0.5134 1.1225 0.4744 1.8923 0.1870
DeepAffinity 0.2945 0.8670 0.7905 0.6490 2.0908 0.1620
Sequence-Agnostic
(singleton)

0.0010 0.9995 0.4633 0.7826 1.5289 0.4608

Sequence-Agnostic
(multi-head)

0.0055 0.9980 0.4233 0.8019 1.3151 0.4543

BindingDB-18
trainset

BindingDB-18
valset

BindingDB-18
testset

Sequence-Agnostic
(multi-head)

0.0101 0.9952 0.4974 0.7663 0.4975 0.7636

BindingDB-18
trainset & -21

0.0145 0.9942 0.3716 0.8261 0.3680 0.8257

BindingDB-18
trainset & -22

0.0161 0.9926 0.3698 0.8264 0.3672 0.8255

trainset not covering enough corner cases. This conjecture
can also be confirmed from results of the case when Binding
DB-21/22 are added to the trainset, where SAM-DTA demonstrates
comparable trainset errors but clearly better valset and testset
performances. It indicates that the performance has not saturated
and more data are beneficial for covering more corner cases.

Conclusion
In this paper we propose SAM-DTA, a sequence-agnostic model
for drug–target binding affinity prediction. It is fundamentally
different from the canonical paradigm that processes the inputs
of the protein and the ligand separately and then combines them
together. Rather, different proteins are taken separately and are
joint trained in a cooperative multi-head manner. We empirically
demonstrate that the novel paradigm outperforms its competitive
sequence-based counterpart with a clear margin, for example

with the MSE of 0.4261 versus 0.7612 and the R-Square of 0.7984
versus 0.6570 against DeepAffinity [23]. Moreover, the sequence-
agnostic paradigm further shows its unique advantage in transfer
learning of novel proteins (with the MSE of 0.4486 versus 0.9140
and the R-Square of 0.7348 versus 0.4570 against DeepAffinity [23]
in the funetuning strategy), as well as in predicting future data
(with the MSE of 1.3151 versus 2.0908 and the R-Square of 0.4543
versus 0.1620 against DeepAffinity [23] tested in BindingDB-22).
Extensive experiments are also conducted to compare different
architectural settings and hyper-parameters, to evaluate different
strategies in transfer learning and to assess the effect by the
capacity of dataset. Results are analyzed with scatter plots, violin
plots and so on.

Note that the proposed sequence-agnostic model also has
a connection with sequence-based methods. Recall that in the
multi-head scheme, all but the last FC layer is shared among
the heads. Equivalently, only a linear layer with a h-dimensional
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Figure 6. Violin plot analysis between testsets as BindingDB-18 testset, -21 and -22 for SAM-DTA trained on BindingDB trainset. Different views across
(A) proteins and (B) ligands are both analyzed, where protein–ligand pairs are grouped according to proteins/ligands and MSE is calculated for each
protein/ligand, respectively. Truncated at MSE 5.0.

weight and a scalar bias is peculiar to each protein, whereas
others are all shared. As a result, the weight and bias can also
be regarded as a ‘representation’ of the protein. In sequence-
based methods, the sequence information of the protein is fed
into the model as part of the input, and there is always some
module that digests this input and outputs the feature for that
protein. For example, in DeepAffinity [23] an embedding layer,
an RNN and an attention layer collectively serve to give the
protein feature based on the sequence. We say in this case the
protein feature is extracted by the model. On the contrary, in the
proposed multi-head sequence-agnostic scheme, parameters of
the last layer serve as the ‘protein feature’, but are optimized
with gradient descent in the training process. It is thus learned
by the model: a protein is characterized completely by the ligands
that it interacts. In Figure 7 we visualize the learned ‘features’ by
principal component analysis in the transfer learning scenario,
where each dot represents a protein, and the color indicates one
of the four classes it is in: nuclear ER, ion channels, receptor
tyrosine kinases and GPCR. Note the clustering of these features
for proteins in the same class. For example, proteins of receptor
tyrosine kinases lie apart from that of other classes. The clustering
reveals that proteins in the same class have features that are also
with closer proximity in the feature space, which is a sign for
the correlation of the learned features to protein relationships.
It would also be of interest to investigate the correlation between
this learned feature and the sequence itself, and we leave it for
future work.

Note also that the proposed sequence-agnostic model can be
straightforwardly extended to other measures in affinity predic-
tion, such as Ki, Kd, EC50, etc. Also, the paradigm can be applied
and evaluated in other interaction prediction topics, for example
cancer drug responses, microbe–drug associations, etc., where
cancer cell lines and microbes can be treated separately in the
multi-head scheme, like proteins in this study. Considering that
cancer cell lines and microbes are in a more macro level and
cannot be simply and fully characterized by a sequence, agnos-
tic models have more advantage of tolerability for incomplete

Figure 7. Visualization of the learned parameters of the last layer by
principal component analysis in the transfer learning scenario. These
parameters are seen as the ‘features’ for proteins. Each dot represents a
protein, the color of which indicates one of the four classes it is in: nuclear
ER, ion channels, receptor tyrosine kinases and GPCR.

or inaccurate quantitative characterization. We also leave it for
future work.

Key Points

• A novel sequence-agnostic paradigm (SAM-DTA) is pro-
posed for drug–target binding affinity prediction.

• SAM-DTA achieves superior performance than the
sequence-based counterpart, without access to any
protein-sequence-related information.

• SAM-DTA shows unique advantage in transfer learning
of novel proteins, as well as in predicting future data.
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