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Abstract

The recognition of T-cell receptor (TCR) on the surface of T cell to specific epi-

tope presented by the major histocompatibility complex is the key to trigger

the immune response. Identifying the binding rules of TCR–epitope pair is cru-
cial for developing immunotherapies, including neoantigen vaccine and drugs.

Accurate prediction of TCR–epitope binding specificity via deep learning

remains challenging, especially in test cases which are unseen in the training

set. Here, we propose TEPCAM (TCR–EPitope identification based on Cross-

Attention and Multi-channel convolution), a deep learning model that incor-

porates self-attention, cross-attention mechanism, and multi-channel convolu-

tion to improve the generalizability and enhance the model interpretability.

Experimental results demonstrate that our model outperformed several state-

of-the-art models on two challenging tasks including a strictly split dataset and

an external dataset. Furthermore, the model can learn some interaction pat-

terns between TCR and epitope by extracting the interpretable matrix from

cross-attention layer and mapping them to the three-dimensional structures.

The source code and data are freely available at https://github.com/Chenjw99/

TEPCAM.
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1 | INTRODUCTION

T cell plays a critical role in human's immune system
(Germain, 2002; Waldman et al., 2020; Wen et al., 2011).

In the process of adaptive immune response occurred
during virus infection or abnormal proliferation, T cell
recognizes the specific antigen and triggers a series of
downstream events to eliminate infected or cancerous
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cells (Paucek et al., 2019). Peptides are the most fre-
quently observed among diverse types of antigens that
are often presented by major histocompatibility complex
(MHC) molecules, and then are recognized by T-cell
receptor (TCR) located in the T-cell surface (Rossjohn
et al., 2015; Yin et al., 2012). The key for ensuring a
robust and specific immune response is the diversity of
TCR which is made by VDJ gene recombination (Arstila
et al., 1999; Bassing et al., 2002; Roth, 2014). This diver-
sity allows for recognition of a vast library of antigens
(Chronister et al., 2021; Gielis et al., 2019; Huang
et al., 2020).

Determine the binding specificity of TCR–epitope lights
the way for designing neoantigen vaccine and drugs, which
is crucial for developing new therapies that target the
immune system (Linnemann et al., 2015). Several experi-
mental methods such as pMHC multimers, yeast display-
based libraries and single-cell sequencing have been utilized
to identify specific TCR–epitope pairs (Altman et al., 1996;
Birnbaum et al., 2012; Ng et al., 2019; Wen et al., 2011).
However, the barrier of high cost and low discovery fre-
quency hinders the investigation of general binding rules.
Therefore, computational methods were developed to model
or predict the binding pairs based on the limited hand-
crafted data (Dash et al., 2017; De Neuter et al., 2018).
Machine learning-based models were found helpful among
those methods. Recently, various deep-learning architectures
had been employed in the task of predicting whether a given
TCR could bind to a given antigen. For example, convolu-
tional neural network (CNN) was implemented in NetTCR
and ImRex (Jurtz et al., 2018; Moris et al., 2021), ERGO used
both long short-term memory (LSTM) and Autoencoder to
build models (Louzoun, 2020), and attention mechanisms
were applied in TITAN and ATM-TCR (Cai et al., 2022;
Weber et al., 2021). Several methods applied pretrained
encoder as embedding, such as PMTNet, TEINet, and TCR-
BERT (Wu et al., 2021; Jiang, Huo, & Cheng Li, 2023; Lu
et al., 2021). In addition, techniques include meta-learning,
contrastive learning, and ensemble learning were also
employed to predict binding specificity (Fang et al., 2022;
Gao, 2023; Xu et al., 2021). Although most of these models
performed impressive in their settings, the challenges remain
in this filed. First, the performance of models drops when
they are generalized to novel sequences that are unseen in
the training data (Deng et al., 2023). Second, the imbalance
of data often results in sequence memorization, or generally
called shortcut learning in the machine learning field
(Geirhos et al., 2020). That is to say, model tends to memo-
rize majority of sequences rather than learning the internal
binding pattern between TCR and epitope.

To overcome these challenges, we proposed a deep
learning framework named TEPCAM (TCR–EPitope
identification based on Cross-Attention and Multi-

channel convolution), for prediction of binding specificity
between TCR and epitope. By incorporating multiple
attention mechanisms including self-attention and cross-
attention, our model enables to learn more specific fea-
tures that govern recognition between TCR and epitope
to increase generalizability on unseen data. The better
interpretability of model roots from the extracted atten-
tion map, which is helpful for explaining the pattern
learned during training stage. In this study, we compare
TEPCAM with several state-of-the-art models on two
strictly designed test tasks and observed the superior per-
formance of our model. The ablation experiments dem-
onstrate that each module in our model contributes to
the predictive power of the whole model. Then we inves-
tigate the learned binding pattern via attention matrix
and prove that our model could focus on the important
region that determines binding between TCR and epi-
tope. Furthermore, we conduct case studies on a high-
quality dataset to elucidate the model's interpretability by
successfully mapping the model attribution with the
ground truth structure.

2 | RESULTS

2.1 | Problem definition and model
overview

In TCR–epitope binding identification task, the aim is to
predict whether the given TCR and epitope bind to each
other. The epitope information is given as a short peptide
sequence which consists of several amino acid residues.
For TCRs which compose of α and β chains as well as
other extra information (e.g., V, D, and J genes), the
complementarity-determining region 3 (CDR3) region of
β chain is the most representative element for TCR since
this region typically locates most closely to corresponding
epitope. One of 21 letters is used to represent each amino
acid residue of both types of sequences. Given TCR and
epitope sequence as input, the model output a continu-
ous value between 0 and 1 that indicates the probability
of binding.

The proposed framework called TEPCAM is an end-
to-end model (Figure 1). The raw epitope sequence and
aligned TCR sequence are encoded by an embedding
block with additional positional encoding strategy. Then
the encoded sequences go through the attention module
which contains a self-attention layer and a cross-
attention layer, in which the multihead attention mecha-
nism is often used to process contexture information.
While self-attention layer obtains the query, key, and
value from single sequence, cross-attention transforms
one input sequence as query and another sequence as
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key and value respectively, which is a better way to cap-
ture more specific interactions between two parts of input
by allowing model to attend to both of sequences simulta-
neously, leading to better generalizability. The output of
attention module matrix goes through a multi-channel
convolutional layer in order to further process features,
which are entered into final feed-forward layer consisting
of three fully connected layers with batch normalization
and GeLU activation function to output a final value.

2.2 | TEPCAM achieves better
generalizability than several state-of-the-
art models

The experimental validated datasets were used to train
and test models. In general, we trained TEPCAM using
TEP-merge dataset which were merged from three public
databases, including VDJdb (Goncharov et al., 2022),
McPAS and IEDB (Tickotsky et al., 2017; Vita et al., 2019;
Figure 2A). To avoid external bias from the negative sam-
ple generation strategy (Moris et al., 2021), we did not
use a background TCR dataset such as data from 10�
Genomics assay or TCRdb but applied the strategy of

randomly shuffle positive pairs to generate negative pairs
(Chen et al., 2021; Montemurro et al., 2021). Finally,
TEP-merge consists of 129,654 TCR–epitope pairs with a
positive: negative ratio as 1:1, involving 1523 unique epi-
topes and 60,342 unique TCR. The imbalance and long-
tail of dataset were observed on the epitope side
(Figures 2B,C, S1, and S2), in which the top 117 epitopes
accounted for 90% of the dataset, while the remaining
1406 epitopes contributed to only 10% of the data. As for
TCR, the longtail distribution is relatively less pro-
nounced. Instead of random split dataset in which most
of TCRs and epitopes in the test set are likely to be
appeared in the training set, we strictly split the dataset
to construct a zero-shot TCR prediction task to test model
performance when generalized to novel TCR sequence
which demands high generalizability. In this setting, the
TCR sequences of test set were unseen in the training set.

To verify our model's generalizability, we first com-
pare TEPCAM against other four TCR–epitope binding
specificity prediction models on the strictly split TEP-
merged dataset. Four baselines are all deep learning-
based models, which were established in a supervised
way, including TITAN, ERGO-AE, ERGO-LSTM, and
ATM-TCR. The dataset was split into a ratio of 4:1 for

FIGURE 1 Overview of TEPCAM architecture. (a) The model consists of embedding module, attention module, convolution module,

and feed-forward layer. Given a T-cell receptor (TCR) sequence and epitope sequence, the model outputs a continuous probability from 0 to

1 which indicates whether two sequences are binding or not. (b) The fine-grained visualization of attention module.
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training data and test data. The split was repeated by
10 times in order to minimize the impact of randomness.

In this TCR zero-shot setting, TEPCAM showed bet-
ter performance than other four state-of-the-art methods
(Figure 3A and Table S5). The higher values in terms of
Accuracy, AUC, AUPRC, and F1 were observed. More-
over, we implemented the test for 25 times by splitting
dataset using 5 different random seeds. For each random
seeds, we applied five-fold cross-validation (CV) that
every fold contained unique TCR, and then we calculated
the mean value and variation for each metric. Our model
also showed low variation values among the metrics of
Accuracy, AUROC, and AUPRC. The results indicated
that TEPCAM could successfully generalize to the unseen
TCR sequences.

Then we applied TEPCAM to an external dataset
named ImmuneCODE in order to test the performance
when transferring to another dataset with potentially dif-
ferent distribution. After the same filtering, the final
ImmuneCODE dataset contained 28,303 TCR–epitope
pairs assigned to �1000 Coronavirus disease 2019
(COVID-19)-related individuals (Nolan et al., 2020), in

which the pairs with TCR appeared in merged dataset
were removed. All the models were trained using the
entire TEP-merge dataset, and then tested in Immune-
CODE. As shown in Figure 3B and Table S6, TEPCAM
outperforms other models in terms of all the metrics on
this external dataset. Notably, in comparison to the train-
ing and test data sourced from one dataset, the external
test is of more challenging, since the distribution of exter-
nal dataset may be more distinct, and the significant dis-
tribution shift can make it more difficult to generalize
the model on unseen data. In sum, experimental results
demonstrated that our model exhibits superior generaliz-
ability compared to other recently published frameworks.

2.3 | Detail analysis of predictive power
of individual components in the model

In this subsection, we further assessed the predictive
power of individual module of the whole model. The
advantages of TEPCAM can be summarized as two parts.
First, in a known binding epitope–TCR pair, the TCR

FIGURE 2 Data curation and statistical analysis. (a) The process to generate TEP-merge dataset. Three datasets were merged by

removing duplication, and then filtered by specific length for T-cell receptor (TCR) and peptide respectively. Finally, the same number of

negative pairs were generated by random shuffling. (B) The imbalance and longtail distribution of epitopes in the TEP-merge. The top

177 epitope accounted for 90% of the entire dataset (Dark blue line), the longtail distribution also observed considering the percentage of

epitope (green blue bar). (C) The diverse of TCR in the TEP-merge, exhibiting a relatively stable distribution.
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recognizes epitope by only using several key residues,
and similarly, the epitope also interacts with TCR by
using only a few specific residues. The cross-attention
module of our model is capable of capturing the specific
residue-wise interaction between two input sequences.
Second, the output of cross-attention encoded the interac-
tion map of TCR and epitope sequences and such matrix
is suitable to be further processed by convolution neural
network for feature extraction and learning local pattern.
The CNN layer we used did not modify the matrix shape
but increased the channel number, enabling the model to
enrich more knowledge. We conducted a series of abla-
tion analysis on the ImmuneCODE dataset. First, a drop
of performance was observed when either the self-
attention module, cross-attention module, or convolution
module was removed (Table 1), but the metrics are still
higher than that of the baseline models. This result may
be attributed to the fact that the attention layer after
embedding module can extract useful features for
prediction, although one of them was removed. Then we
performed a module swap by repositioning the cross-
attention module after the convolution module. As a
result of this rearrangement, we observed a decrease in
the model's performance.

Before going through the attention module, the fea-
tures were initiated originally from an embedding block.
We also tested the different strategies to get sequence
embeddings, including BLOSUM62 matrix and two pre-
trained embedding models. BLOSUM62 matrix naturally
contained the relationship between one residue to
another by mapping one amino acid to a 24-dimensional
space (Henikoff & Henikoff, 1992). In our settings, a
lower AUROC value of 0.666 was observed for BLOSUM
62 matrix in comparison with 0.679 for encoding
sequence by our embedding layer (e.g., random

initialization). Then, we employed pretrain model origi-
nally such as TCR-BERT and TCR2Vec, which are two
pretrained frameworks published recently, training on a
large TCR sequence pool. TCR-BERT embedded the
sequence into a 768-dimensional vector and TCR2Vec set
the hidden size as 120 (Wu et al., 2021; Jiang, Huo,
Zhang, et al., 2023). Both TCR-BERT and TCR2Vec
encoded the sequence to a fixed length, and the output
was presented as a high-dimension vector that contained
enriched evolutionary information, and improved perfor-
mances were observed on TCR–epitope binding classifi-
cation tasks comparing to general protein language
models such as TAPE and ESM series. We tried to apply
these two models in the embedding module. However,
the implementation of TCR-BERT and TCR2Vec even
decreased the model performance (Figure 4A).

Deep models sometimes tend to get better perfor-
mance on majority samples. For TCR–epitope-related
dataset, the diversity of TCRs is far more than that of epi-
topes, and the distribution of epitopes is severely imbal-
anced. We investigated the performance of per epitope in
both of two tasks after removing the epitopes that are
assigned by <20 TCRs to avoid extreme values that skew
the model performance. For task1, the epitope counts
and metrics were shown in very weak negative correla-
tions, suggesting that our model is not sensitive to epi-
tope distribution on this dataset (Figures 4B and S3–S5).
On the ImmuneCODE test set, positive correlations were
observed. However, when we further searched the top
20 epitopes in terms of AUC which had the best predic-
tion performance (Table 2), the epitope counts and met-
rics had negative correlations, which indicated that the
counts for those epitopes identified accurately did not
affect model performance. (Figure 4C,D). These findings
supported that our model was not affected too much by

FIGURE 3 Performance comparison of TEPCAM with four baseline models on two independent test tasks. (a) On the unseen T-cell

receptor (TCR) task constructed by strictly splitting TEP-merge dataset. (b) On the ImmuneCODE dataset. ACC, accuracy; AUC, area under

the receiver operating characteristic curve; AUPRC, area under the precision-recall curve.
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the inner bias of training data, suggesting that the TEP-
CAM model could learned some binding pattern that
determines the binding of two sequences.

To further illustrate the advantages of our model, we
then evaluated the model performance on the level of

specific epitope. First, we benchmarked TEPCAM against
other four baselines. The performance on individual epi-
tope was evaluated using AUROC as metric, and then the
number of epitopes that obtain Top 1 AUROC for each
model is counted. We found that TEPCAM achieved the

TABLE 1 Model performance comparison on ImmuneCODE dataset by five repetitions between the whole model, a model with cross-

attention module placed after convolution, and models with convolution layer, cross-attention layer, and self-attention removed,

respectively.

Model ACC AUC AUPRC F1

TEPCAM 0.622 ± 0.0010 0.677 ± 0.0012 0.722 ± 0.0012 0.633 ± 0.0029

Cross-attention final 0.618 ± 0.0020 0.672 ± 0.0019 0.718 ± 0.0019 0.630 ± 0.0030

Remove cross-attention 0.611 ± 0.0023 0.660 ± 0.0026 0.712 ± 0.0013 0.619 ± 0.0026

Remove self-attention 0.617 ± 0.0008 0.669 ± 0.0014 0.716 ± 0.0004 0.624 ± 0.0007

Remove convolution 0.598 ± 0.00122 0.640 ± 0.0018 0.701 ± 0.0010 0.605 ± 0.0017

Note: The best values were shown in bold.

FIGURE 4 Performance comparison of different embedding methods and the number of samples in different epitopes. (A) Comparison

of three different encoding methods. The correlation between epitope counts and predictive value on (B) unseen T-cell receptor (TCR) task.

(C) ImmuneCODE dataset. And (D) the selected subset for epitopes with top 20 AUC on ImmuneCODE dataset. The R square values of

linear regression are shown on the top right.
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highest Top 1 AUROC on both Task 1 (CV on merged
dataset) and Task2 (benchmarks on external dataset
ImmuneCODE; Figure 5A). Second, we ranked epitopes
by their counts on training set. Then the most abundant
20 and fewest 20 were selected. We found ATM-TCR per-
formed best among four baseline models, so we focus on
the comparison between TEPCAM and ATM-TCR. TEP-
CAM performed better in most epitopes, especially a few
bottom epitopes which TEPCAM obtained acceptable
AUROC when ATM-TCR almost failed to determine
(Figure 5B).

2.4 | Attention map provides the clue for
the learned binding patterns of TCR–
epitopes

TEPCAM has an advantage on model interpretability that
enables a closer look at the interaction patterns at residue
level, which is critical for detecting specific biological
rules. Basically, the interaction strength could be repre-
sented by attention score, which is calculated by the
scaled dot-product of Key and Query. We extract
the attention map in self-attention layer and cross-
attention layer from ImmuneCODE test dataset to

validate whether our model learned salient binding pat-
tern. For both TCR and epitope, the self-attention maps
were condensed to a one-dimensional vector by taking
the mean across other dimensions (Figure 6A). The
results depicted a higher attention score for the middle
part of TCR sequence, and the scores on epitope side are
close to uniform distribution except for beginning and
final positions, suggesting that the self-attention layer
mainly focuses on the middle part for input data, espe-
cially for TCR. Two-dimensional attention maps
extracted from cross-attention reveal more detailed infor-
mation about interaction patterns between TCRs and epi-
topes after averaging over all samples (Figure 6B). The
matrix shows a higher score in the middle part of TCR
toward epitopes, and the fine-gained interaction map
could provide more biological insights on the specific
cases.

2.5 | Application of TEPCAM on the
TCRs with 3D structures

We finally applied TEPCAM to a high-quality dataset
from STCRdab (Leem et al., 2018), which records the
curated TCRs with three-dimensional crystal structure

TABLE 2 Details of top 20 epitopes

in terms of AUC on the ImmuneCODE

dataset.

Epitope Count AUC Accuracy AUPRC Recall F1

TLDSKTQSL 96 0.952 0.906 0.966 0.896 0.905

RLYYDSMSY 30 0.791 0.667 0.775 0.867 0.722

NQKLIANQF 46 0.781 0.761 0.819 0.739 0.756

VLWAHGFEL 1218 0.717 0.672 0.746 0.588 0.642

NLNESLIDL 110 0.688 0.636 0.711 0.618 0.630

KLPDDFTGCV 742 0.685 0.620 0.729 0.612 0.617

LLSAGIFGA 50 0.685 0.560 0.747 0.600 0.577

YIFFASFYY 216 0.685 0.616 0.745 0.648 0.628

KEIDRLNEV 38 0.676 0.605 0.658 0.474 0.545

ALLADKFPV 58 0.675 0.603 0.676 0.690 0.635

TLIGDCATV 540 0.672 0.617 0.692 0.678 0.639

KLNVGDYFV 388 0.665 0.593 0.673 0.613 0.601

FLLNKEMYL 106 0.659 0.632 0.699 0.585 0.614

RQLLFVVEV 940 0.658 0.601 0.656 0.611 0.605

LEPLVDLPI 240 0.657 0.600 0.644 0.617 0.607

YLNTLTLAV 752 0.654 0.605 0.655 0.641 0.619

FLPRVFSAV 1258 0.653 0.618 0.638 0.658 0.633

ILGLPTQTV 430 0.651 0.616 0.725 0.591 0.606

EEHVQIHTI 84 0.650 0.595 0.619 0.548 0.575

KAYNVTQAF 1209 0.649 0.600 0.671 0.617 0.608

Note: Epitope sequence and count in the training set, as well as six metrics are shown.
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data stored in Protein Data Bank (PDB). We selected TCR
structures with assigned peptide epitope presented by
MHC Class I molecule. Moreover, we performed epitope
zero-shot task by removing overlapped epitopes in train-
ing data. In the scenario of unseen epitope task, the epi-
tope zero-shot task refers to the recognition of TCR–
epitope pair in the scenario that epitopes in test
are unseen in the training set. Most of models failed to
predict correctly and the accuracy drops to the random
guess level. This task is particularly challenging, partly
due to the very limited epitope diversity. We obtained
128 high-quality items with three-dimensional structure
and extracted the corresponding epitope and CDR3
sequences for model test after removing overlap items.
Since this test dataset only contains positive samples, we
evaluated the performance of our model using the accu-
racy metric. TEPCAM shows a recall rate of 0.57,

suggesting that more than half of the binding samples
were successfully predicted. We also evaluated the model's
performance in this scenario by generating negative sam-
ples using a random shuffle strategy. In this benchmark,
TEPCAM achieved the highest F1 value of 0.587
(Table S4). To prove our model not just successfully pre-
dict items with epitope close to training set, we explored
the relationship between binding probability and epitope
distance. Here, smallest levenshtein distance acted as dis-
tance for one epitope on high-quality dataset. Unexpect-
edly, the spearman correlation between levenshtein
distance and probability was 0.286 with a p-value 0.001,
indicating that the predicted probability of increases as
epitope's levenshtein distance increases (Figure 7). These
interesting results prove that our model could successfully
retrieve a part of unseen epitopes, without relying on the
presence of similar epitopes on the training set.

FIGURE 6 Visualization of attention score for testing on the ImmuneCODE dataset. (a) Mean attention scores of epitopes and T-cell

receptor (TCR) from self-attention layer. (b) The mapped residue-level interaction between TCR and epitope, extracting from cross-attention

layer.

FIGURE 5 Comparison of area under the receiver operating characteristic curve (AUROC) for each epitope. (A) Number of top-ranked

epitopes predicted by the models. (B) Comparison of AUROC between TEPCAM and ATM-TCR for the top 20 and bottom 20 epitopes based

on their count numbers.
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Using interaction map extracted from cross-attention
layer enables us to easily investigate the region on which
our model focuses. We picked TCR–epitope complexes
that are recorded with PDB ID 2BNQ and 5EU6 as exam-
ples (Figure 8). As shown in Figure 8A, the glycine resi-
due (G*5) on the epitope located in the binding surface
located close to G*99-T*101 of TCR CDR3 region. The
corresponding attention scores of G*5 to G*99 and G*5
and G*100 were observed highest in the cross-attention
matrix, suggesting that our model had caught these pairs
that have potential to determine the binding between
TCR and epitope. The second case came from protein
complex with PDB ID 5EU6 (Figure 8B). The tryptophan
residue (W*5) located at the fifth position of the epitope
exhibits a greater degree of attention compared with
other positions. As shown in the crystal structure, this
tryptophan residue has an aromatic ring toward the cen-
tral of CDR3 loop region, resulting in a closer distance
for tryptophan residue to several residues in TCR
sequence. The distance between the aromatic ring to
tyrosine (Y94), valine (V95), and glycine (G96) were
among 5 Å. TEPCAM had captured two of three interac-
tion pairs. These insights suggested that TEPCAM had
learned some knowledge about the underlying binding
mechanism.

3 | DISCUSSION

Computational methods are of great importance in iden-
tifying interaction between TCRs and epitopes. In recent
years, more and more predictive models based on deep
learning were proposed with the purpose of accurately
predicting binding of TCR–epitope (Hudson et al., 2023).

The task is not very challenging when data are not
strictly divided. Most of frameworks could achieve an
AUC value more than 0.8 in the strategy of random split.
However, this good performance cannot be observed
when these models were extrapolated to unseen data.
The generalizability of a model is more significant in
real-world application scenario where novel and unseen
sequences are likely to be encountered (Deng et al., 2023;
Grazioli et al., 2022). Therefore, we proposed TEPCAM
as a deep learning framework with better generalizability
in the settings of unseen TCRs prediction on both a
strictly split dataset and an external dataset.

TEPCAM adopted attention mechanism which was
originally applied in the field of Nature Language Process
since its power focuses on important part of the sequence
information. Given that TCR and epitope are both
sequences consisting of amino acid residues which can
be represented by letters and the hierarchical structure
between nature language in sentences and protein
sequences are similar (Ferruz & Höcker, 2022), the appli-
cation is reasonable and effective. The architecture of a
self-attention layer followed by a cross-attention layer
enables the model to capture inter-sequence dependency
for both TCR and epitope sequences, as well as relation-
ship between them. Cross-attention layer models interac-
tion at the residue level by incorporating two sequences
during the calculation of scaled attention score. This fine-
grained modeling is particularly useful for identifying
binding that is determined by only specific residues of
two sequences. Another advantage of cross-attention
module is its interpretability, in which the attention
weight scores between residue pairs from the TCR and
corresponding epitope, and serves as the representation
of the interaction strength, thereby making the result

FIGURE 7 Relationship

between epitope distance and

prediction value on the STCRdab

dataset. The distance of novel

epitope was defined as the shortest

levenshtein distance to existed

epitope in the training set. The

spearman correlation is calculated

and p-value is extracted by using

t-test.
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interpretable. The correspondence between knowledge
our model learned and real distance of three-dimension
was observed when checking the matrix for specific
TCR–epitope pair. Inspired by the image processing tech-
niques in the field of computer vision, multi-channel con-
volutional neural network was applied in order to further
expand the generalizability of the model. The multi-
channel convolution layers are capable of extracting
diverse and useful local features in the interaction map
output from cross-attention module, since the map is
akin to pixels of image data. Together, the novel architec-
ture makes our model superior when it is generalized to
unseen sequences.

The public datasets in this community are imbalance
especially on the epitope side, so that the limited diversity
increases the difficulty for extrapolation. The negative
data generation strategy is worth noting. The utilization
of a background TCR pool might lead to bias and overes-
timation of model performance (Dens et al., 2023; Moris
et al., 2021), so we used random shuffle strategy to obtain
our negative pairs. This strategy might bring false nega-
tive samples although the possibility is relatively low. To
improve benchmarking and provide more valuable data
in this field, there is an urgent need to develop high-
quality negative data validated by experiments.

An interesting result from our assessment of employ-
ing pretrained model revealed that it did not appear to
bring any improvement at least in our model and dataset.
This result may be attributed to the complexity of our
model, as the pretrained encoder typically follows a sim-
ple downstream module such as fully connected layers.
Nonetheless, the models trained on larger sequence data-
set still offer greater potential, and further research is
needed to understand a better way to integrate pretrained
model to achieve optimal performance.

A potential direction for further extending our model
is to involve more information. Apart from TCR beta
chain, the alpha chain, and V, D, J genes are also informa-
tive for recognition, but this information are very limited.
Some work such as VDJminer used V(D)J gene segments
as input feature (Zhao, He, Xu, Zhang, et al., 2023). MHC
molecule type can serve as additional input because epi-
topes associated to MHC also follow certain rules and
show preference (Bharadwaj et al., 2012; Chu et al., 2022;
Lu et al., 2021; Robinson et al., 2015; Unanue, 2006). In
addition, the high-quality data with three-dimensional
structure information is valuable for our model, so that
integrating these data might be able to further enhance
the model performance, especially the generalizability.
From a broader perspective, deep learning models for

FIGURE 8 Three-dimensional structure analysis and the corresponding attention scores. Left: The crystal structures were shown in the

left of figure, epitope is colored in red and T-cell receptor is colored in blue, the PDB codes are (a) 2BNQ and (b) 5EU6. Right: the

corresponding attention map extracted from TEPCAM.
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identifying widely receptor-antigen recognition might be
more favorable in practical use. For example, DeepAIR
used structural information and sequence information
simultaneously that extended the application scope to both
TCR and BCR (Zhao, He, Xu, Li, et al., 2023). With more
high-quality immune-specific data available, the predic-
tion tools will be more prominent in the future.

4 | CONCLUSION

In this study, we proposed TEPCAM which is based on
cross-attention and multi-channel convolutional neural
network, for prediction of TCR–epitope binding specific-
ity. Our model has demonstrated superior performance
in predicting TCR–epitope binding on the unseen TCR
task. By leveraging cross-attention and multi-channel
convolution, TEPCAM was able to learn more specific
features that govern recognition between TCRs and epi-
topes. Moreover, the attention matrix extracted from
cross-attention layer increases the model interpretability
and proves the effectiveness of our model in identifying
key binding regions between TCRs and epitopes.

5 | MATERIALS AND METHODS

5.1 | Data curation

We collected TCR–epitope pairs from three databases as
original source: VDJdb (Goncharov et al., 2022), McPAS
(Tickotsky et al., 2017), and IEDB (Vita et al., 2019). For
each database, we only selected the epitopes presented by
human MHC I molecules. We only kept CDR3 region of
β-chain in TCR sequence since this region contains most
valuable information for recognizing epitope and the
databases mainly record sequence information of β chain
with very limited information about other chains
(e.g., TCR alpha chain, V, D, and J genes). Length of
sequences was filtered between 10 and 20 for TCR
sequences and 8–11 for epitope sequences. In order to
obtain a larger diversity of sequences, especially for epi-
topes, we merged three datasets and removed duplicated
pairs. Finally, the merged dataset contains 64,827 positive
pairs. To generate negative samples, we randomly
selected a TCR sequence from our dataset except the
paired one for an epitope, and obtained a mismatched
TCR–epitope pair. To achieve a balance between the
recall rate and precision, we constructed a balanced data-
set with an equal ratio of positive to negative samples.
This strategy is the same as related works such as TITAN,
ATM-TCR, and ImRex. Following this way, we construct
negative data with the same number as positive data. We

finally got a dataset with 129,654 pairs, named TEP-
merge.

To validate our model's generalizability, the data from
ImmuneCODE was collected as a held-out dataset
(Nolan et al., 2020). The quality control filters were the
same as TEP-merge. Moreover, we removed pairs whose
TCR presented in the TEP-merged dataset. The high-
quality dataset was constructed from STCRDab (Leem
et al., 2018), in which we attained 128 TCR–epitope pairs
with three-dimensional structural information stored in
PDB database.

5.2 | Details of the model architecture

We construct TEPCAM for predicting TCR–epitope inter-
actions. Basically, the model contains four parts:
sequence encode module, attention module, convolution
module, and feed-forward module. The input TCR was
first aligned by IMGT number while epitope was right
padded to a fix length. The primary rationale behind con-
ducting alignments stems from the observed fixed pattern
within CDR3 sequences, which exhibits Cysteine and
Alanine as first two positions and a Phenylalanine resi-
due at the terminal position. This strategy could provide
precise positional information and enhances the perfor-
mance of TEPCAM (Figure S6). Then we applied an
embedding layer to process each amino acid to a constant
length vector (the length is a hyperparameter). The
embedding layer consists of a vanilla embedding and
positional embedding. Although a certain vector was
extracted from each position to represent the correspond-
ing amino acid, the positional embedding is still required,
because the same amino acid should be represented by
different vectors which not only consider its amino acid
type but its position in the sequence. The sequence vec-
tors were then fed into a self-attention layer to be further
processed, and then a cross-attention layer was employed
as a core information exchange module. The multi-head
attention mechanism is powerful that focuses on most
important region of input, especially in the field of
Nature Language Process, and it has the ability to capture
long dependency in a long sequence. The query (Q), key
(K), and value (V) are from same input vector in self-
attention, and the attention score is calculated as
Equation (1):

Attention scorei ¼ softmax
QiKi

T

ffiffiffiffiffiffi
dK

p
� �

ð1Þ

And final output is the merged information of more than
one heads, calculated as Equation (2) shown below:
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Output¼ Concat Attention score1 �V1,
�

Attention score2 �V2…,Attention scorei �V i

�
W 0

ð2Þ

The similarity between the query (Q) and key
(K) determines the weight assigned to each value (V) in
the final attention score which acts as a coefficient that
determines the importance of each value in the calcula-
tion of the attended output. In the context of cross-
attention, the goal is to capture the interaction between
two distinct entities by mapping them to separate Q and
K–V pairs. The attention score extracted from self-
attention layers can be interpreted as the contribution of
each position to the entire predictor. And, the matrix
derived from cross-attention layer reflects the interaction
pattern between each position of TCR and each position
of epitope directly.

The concatenated matrix output of cross-attention
layer is finally sent to convolution module, which com-
poses of three layers of convolutional neural networks.
Convolution neural network is widely applied in computer
vision, which is also suitable for this task since the atten-
tion matrix can be regarded as a picture with pixels. We
used a single convolution kernel with size = 3 and
stride = 1. The padding number was also set to 1 in order
to maintain the output size. The number of channels was
increased gradually from 1 to 4, 16, and 32 for output, and
the batch normalization was applied after convolution
operation, following the activation function GeLU
(Hendrycks & Gimpel, 2016). The features passed through
CNN are averaged in the channel dimension and
concatenated. A residue connection was applied for the
flatten output of cross-attention. Finally, the concatenated
features are sent into feed-forward layer with three fully
connected layers. The perceptron has 1024, 128, 16, 2 neu-
rons for each linear layer and the output also activated
with GeLU. Finally, the Softmax was used to dense the
output into a range from 0 and 1. By sequentially stacking
these four core modules, the input sequences are pro-
cessed from multiple perspectives and information is suffi-
ciently exchanged to yield relatively reliable predictions.
We use the cross-entropy loss as loss function.

5.3 | Implementation and
hyperparameter tuning

The data process was conducted by using Biopython 1.78,
Numpy 1.23.5, and Pandas 1.5.2. We used PyMol version
2.5.5 to visualize protein three-dimensional structure.
The visualization of results mainly used ggplot2 package

in R. TEPCAM was trained on two GeForce RTX 3080
GPUs with 16G memory under the PyTorch 2.0.1 frame-
work with Python 3.8.16. The model weights were
updated using AdamW optimizer with 1e�4 weight
decay.

We conducted hyperparameter tuning using random-
split strategy (Note S1), and the optimal hyperparameters
are: Number of headself-attention = 3, Number of headcross-
attention = 6, dimensions of embedding and attention
layer = 32, learning rate = 5e�4 (Table 3). We found
that TEPCAM was relatively robust across different
hyperparameter values. The results of hyperparameter
tuning are given in Table S1–S3.

5.4 | Evaluation metrics

The performance of TCR–epitope binding prediction is
evaluated by metrics below:

Accuracy¼ TPþTN
TPþTNþFPþFN

F1 ¼ 2 �Precision �Recall
PrecisionþRecall

Precision¼ TP
TPþFP

,RecallðSensitivityÞ¼ TP
TPþFN

,

Specificity¼ TN
TNþFP

where the TP, FP, TN, and FN represent true positive,
false positive, true negative, and false negative, respec-
tively. We also calculate the AUC and AUPRC that indi-
cate the overall performance of the binary classifier. AUC
stands for area under the receiver operating characteristic
curve, which plots the true positive rate (TPR) against the
false positive rate (FPR) at various decision thresholds.
While AUPRC stands for area under the precision-recall
curve, which plots the precision against the recall rate.

TABLE 3 Hyperparameter tuning details, including parameter

names, values of each hyperparameter, and optimal value.

Hyperparameter Values
Optimal
value

Number of
headself-attention

{1, 3, 5, 6, 9} 3

Number of
headcross-attention

{2, 6, 10, 12, 18} 6

dmodel {16,32,64,128} 32

Learning rate {5e�3, 1e�3, 5e�4, 1e�4,
5e�5, 1e�5}

5e�4
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5.5 | Baseline models

To compare the generalizability of our model, four super-
vised model are selected as baselines, which are pub-
lished recently and showed state-of-the-art performance
on the public datasets. ERGO-LSTM and ERGO-AE are
based on LSTM and Autoencoder (Louzoun, 2020). Since
we only use CDR3-beta as TCR input, the next genera-
tion of ERGO that contains more knowledge was not
considered. TITAN used bimodal attention mechanism
and pretrained on a CPI task (Weber et al., 2021), and
ATM-TCR applied multihead attention network to cap-
ture contexture information (Cai et al., 2022). We
obtained the baseline models from their GitHub reposito-
ries and trained on our dataset for fair comparison.
TCR2Vec and TCR-BERT are two pretrained models, and
we used the weights of the existing model they released
for comparison with our embedding strategy.
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