熊  毅

副研究员,博士生导师

生物信息学与生物统计学系
生命科学技术学院
上海交通大学

电子邮箱: xiongyi@sjtu.edu.cn

研究领域: 生物信息与计算、人工智能


研究方向

  1. 生物大分子功能预测、序列设计与优化

  2. 人工智能驱动的药物、疫苗设计与发现

  3. 面向疾病精准诊疗的多组学大数据整合与分析


  4. 学习和工作经历

    2014.01- 上海交通大学,生物信息学与生物统计学系,助理研究员、副研究员

    2012.01-2013.12 普渡大学,生物学系,博士后

    2002.09-2011.12 武汉大学,计算机应用技术专业,学士、博士


    学术兼职

    浦江国家实验室顾问科学家

    上海人工智能实验室顾问科学家

    BMC Bioinformatics,编委

    Interdisciplinary Sciences-Computational Life Sciences,编委

    IEEE International Conference on Bioinformatics and Biomedicine (BIBM),程序委员会委员

    中国生物工程学会计算生物学与生物信息学专委会委员

    中国计算机学会生物信息学专委会委员

    中国人工智能学会生物信息学与人工生命专委会委员


    科研项目

    主持国家自然科学基金项目

    2022.01-2025.12 人工智能驱动的药物相互作用预测方法及发生机制研究,国家自然科学基金面上项目

    2017.01-2019.12 基于蛋白质分子表面信息的核酸结合界面的分析和预测,国家自然科学基金青年项目

    参与国家重大、重点项目

    2023.10-2026.09 基于噬菌体生物传感技术筛选重大肺部疾病无创性鉴别诊断标志物,国家重点研发计划政府间国际科技创新合作专项

    2019.01-2023.12 高通量蛋白质组学计算的基础理论与算法,国家自然科学基金重点项目

    2016.07-2021.12  蛋白-蛋白相互作用及其网络的理论计算新方法与应用,国家重点研发计划重点专项


    学术论文 (近五年)

    通讯作者 (含共同)

    1. Yanyi Chu, Yan Zhang, Qiankun Wang, Lingfeng Zhang, Xuhong Wang, Yanjing Wang, Dennis Russell Salahub, Qin Xu, Jianmin Wang, Xue Jiang, Yi Xiong*, Dong-Qing Wei*. (2022) A transformer-based model to predict peptide-HLA class I binding and optimize mutated peptides for vaccine design. Nature Machine Intelligence  4:300–311. (ESI高被引论文) [PDF]

    2. Yanyi Chu, Aman Chandra Kaushik, Xiangeng Wang, Wei Wang, Yufang Zhang, Xiaoqi Shan, Dennis Russell Salahub, Yi Xiong*, Dong-Qing Wei*. (2021) DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features. Briefings in Bioinformatics  22(1):451–462. (ESI高被引论文) [PDF]

    3. Jing Zhao, Bowen Zhao, Xiaotong Song, Chujun Lyu , Weizhi Chen, Yi Xiong*, Dong-Qing Wei*. (2023) Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data. Briefings in Bioinformatics  24(2):bbad025. [PDF]

    4. Shenggeng Lin, Weizhi Chen, Gengwang Chen, Songchi Zhou, Dong-Qing Wei*, Yi Xiong*. (2022) MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning. Journal of Cheminformatics  14:81. [PDF]

    5. Shenggeng Lin, Guangwei Zhang, Dong-Qing Wei*, Yi Xiong*. (2022) DeepPSE: prediction of polypharmacy side effects by fusing deep representation of drug pairs and attention mechanism. Computers in Biology and Medicine   149:105984. [PDF]

    6. Shenggeng Lin, Yanjing Wang, Lingfeng Zhang, Yanyi Chu, Yatong Liu, Yitian Fang, Mingming Jiang, Qiankun Wang, Bowen Zhao, Yi Xiong*, Dong-Qing Wei*. (2022) MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism. Briefings in Bioinformatics  23(1):bbab421. [PDF]

    7. Mingming Jiang, Bowen Zhao, Luosheng Gan, Qiankun Wang, Yanyi Chu, Tianhang Chen, Xueying Mao, Yatong Liu, Yanjing Wang, Xue Jiang, Dong-Qing Wei, Yi Xiong*. (2021) NeuroPpred-Fuse: an interpretable stacking model for prediction of neuropeptides by fusing sequence information and feature selection methods. Briefings in Bioinformatics  22(6):bbab310. [PDF]

    8. Yanyi Chu, Xuhong Wang, Qiuying Dai, Yanjing Wang, Qiankun Wang, Shaoliang Peng, Xiaoyong Wei, Jingfei Qiu, Dennis Russell Salahub, Yi Xiong*, Dong-Qing Wei*. (2021) MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Briefings in Bioinformatics  22(6):bbab165. [PDF]

    9. Wei Wang, QiuYing Dai, Fang Li, Yi Xiong*, Dong-Qing Wei*. (2021) MLCDForest: multi-label classification with deep forest in disease prediction for long non-coding RNAs. Briefings in Bioinformatics  22(3):bbaa104. [PDF]

    10. Yanyi Chu, Xiaoqi Shan, Tianhang Chen, Mingming Jiang, Yanjing Wang, Qiankun Wang, Dennis Russell Salahub, Yi Xiong*, Dong-Qing Wei*. (2021) DTI-MLCD: predicting drug-target interactions using multilabel learning with community detection method. Briefings in Bioinformatics  22(3):bbaa205. [PDF]

    11. Qiuying Dai, Yanyi Chu, Zhiqi Li, Yusong Zhao, Xueying Mao, Yanjing Wang, Yi Xiong*, Dong-Qing Wei*. (2021) MDA-CF: predicting miRNA-disease associations based on a cascade forest model by fusing multi-source information. Computers in Biology and Medicine  136:104706. [PDF]

    12. Wei Wang, Xiaoqing Guan, Muhammad Tahir Khan, Yi Xiong*, Dong-Qing Wei*. (2020) LMI-DForest: a deep forest model towards the prediction of lncRNA-miRNA interactions. Computational Biology and Chemistry  89:107406. [PDF]

    13. Xiaoqi Shan, Xiangeng Wang, Cheng-Dong Li, Yanyi Chu, Yufang Zhang, Yi Xiong*, Dong-Qing Wei*. (2019) Prediction of CYP450 enzyme−substrate selectivity based on the network-based label space division method. Journal of Chemical Information and Modeling  59:4577-4586 [PDF]

    合作者

    1. Shaojun Wang, Ronghui You, Yunjia Liu, Yi Xiong, Shanfeng Zhu*. (2023) NetGO 3.0: protein language model improves large-scale functional annotations. Genomics, Proteomics & Bioinformatics   (In press). [PDF]

    2. Song Li, Chao Hu, Song Ke, Chenxing Yang, Jun Chen, Yi Xiong, Hao Liu*, Liang Hong*. (2023) LS-MolGen: Ligand-and-Structure Dual-Driven Deep Reinforcement Learning for Target-Specific Molecular Generation Improves Binding Affinity and Novelty. Journal of Chemical Information and Modeling  63:4207–4215 [PDF]

    3. Mingchen Li, Liqi Kang, Yi Xiong, Yu Guang Wang, Guisheng Fan, Pan Tan*, Liang Hong*. (2023) SESNet: sequence-structure feature-integrated deep learning method for data-efficient protein engineering. Journal of Cheminformatics   15(1):12. [PDF]

    4. Zhiqiang Hu*, Wenfeng Liu, Chenbin Zhang, Jiawen Huang, Shaoting Zhang, Huiqun Yu, Yi Xiong, Hao Liu, Song Ke*, Liang Hong. (2023) SAM-DTA: a sequence-agnostic model for drug-target binding affinity prediction. Briefings in Bioinformatics  24(1):bbac533. [PDF]

    5. Shuwei Yao, Ronghui You, Shaojun Wang, Yi Xiong, Xiaodi Huang, Shanfeng Zhu*. (2021) NetGO 2.0: improving large-scale protein function prediction with massive sequence, text, domain, family and network information. Nucleic Acids Research  49:W469–W475. [PDF]

    6. Ronghui You, Shuwei Yao, Yi Xiong, Xiaodi Huang, Fengzhu Sun, Hiroshi Mamitsuka, Shanfeng Zhu*. (2019) NetGO: improving large-scale protein function prediction with massive network information. Nucleic Acids Research  47:W379–W387 [PDF]


    学生培养

        在读学生

    孙鹤淇,2022级博士,墨尔本大学本科(数学与统计专业)、硕士(生物信息学专业),共同指导
    戴秋颖,2018级直博,南京农业大学本科,共同指导
    林圣庚,2021级硕士,吉林大学2017级本科(计算机专业),共同指导
    陈俊炜,2022级硕士,华中科技大学2018级本科(生物技术专业)
    谭   洪,2023级硕士,华中农业大学2019级本科(生物信息专业)
    陈禹蒙,2020级本科,上海交通大学生物信息学专业

        毕业学生

        博士

    褚晏伊, 2017级直博(致远荣誉计划),毕业去向:斯坦福大学博士后,共同指导
    王   伟, 2016级博士,毕业去向:武田亚洲开发中心(上海),共同指导

        硕士

    赵博文, 2020级硕士,毕业去向:麦吉尔大学读博
    赵    倞,2020级硕士,毕业去向:字节跳动(上海),共同指导
    蒋明明, 2019级硕士,毕业去向:字节跳动(上海)
    王宪赓, 2017级硕士,毕业去向:香港城市大学读博,共同指导
    单晓琪, 2017级硕士,毕业去向:去哪儿网(北京),共同指导
    王乾坤, 2016级硕士,毕业去向:上海交通大学读博,共同指导
    白礼月, 2015级硕士,毕业去向:银联智策(上海),共同指导

        本科

    余文韬, 2019级本科,毕业去向:中国移动(上海)
    韩德坤, 2018级本科,毕业去向:香港大学人工智能专业硕士
    杨子逸, 2018级本科,毕业去向:浙江大学软件学院硕士
    陈天航, 2017级本科,毕业去向:香港城市大学直博
    郭   廓, 2016级本科,毕业去向:上海交通大学电子信息与电气工程学院硕士
    王   哲, 2016级本科,毕业去向:上海交通大学电子信息与电气工程学院硕士
    袁恩铭, 2015级本科,毕业去向:清华大学交叉信息研究院直博
    谭润滋, 2015级本科,毕业去向:纽约大学生物统计专业硕士
    孙正正, 2015级本科,毕业去向:专招基层公务员(西藏)
    李春宇, 2014级本科,毕业去向:上海交通大学安泰经济与管理学院硕士,IBM(上海)


    Copyright © 沪交ICP备20210277. All Rights Reserved.